CAPTURE

MOTION CAPTURE

FILE FORMATS

B Y) | E F F L A N D E R

oy am [glad that 3D acceleration hardware is here to stay. I'm
sure you all feel as liberated as I do by not having to write
all that basic polygon stuff. Clipping, sorting, and draw-
ing pixel-by-pixel is about as dull as 3D programming
gets. Now I have all this great hardware to do the mind-
numbingly dull texture mapping and Z-buffering for me. I
also have the render speed and horsepower to do some
really interesting stuff. What am I going to do with all
this spare time? Really cool real-time 3D characters!
Sure, we’ve all seen real-time 3D characters. We’ve even
seen real-time 3D characters with a restricted use of ani-

mation. However, there have been so many limitations,

Jeff Lander is a Digital Evolutionist at Darwin 3D, where he crafts technology for the future of gaming, entertainment, and network
communication. He can be reached at jeffl@darwin3d.com.

GAME DEVELOPER JANUARY 1998 http://www.gdmag.com

JANUARY 1998 /[GAME\DEVELOPER

..“::____:____

.,m; _

l

=
ir

MOTION
|2

7]
10

il

MOTION CAPTURE

and we all want so much more. We
want realism, but how do we go about
fulfilling these sick desires? The
answer: motion capture.

et’s face it, motion capture is hot.

In the last couple of years, motion
capture has spread everywhere — from
movies to television commercials,
from sports titles to action games,
even to click-and-explore adventures.
Publishers are climbing all over each
other trying to get the words “Motion-
Captured 3D Characters” on their
boxes. A lot of hype has been loaded
onto those words, often to the player’s
disappointment. As usual, our expecta-
tions exceed what the technology can
truly deliver. But we’re getting so
much closer; we have new ripping
hardware and the experience from
past-generation motion capture down-
falls. Yet the desire for more keeps
increasing.

The hype has gotten so over-the-top

the techniques needed for
programmers to apply
motion capture data to real-
time characters work equally
well with any type of anima-
tion data, be it keyframed,
motion captured, or animat-
ed through procedural
dynamics.

The Need

et’s imagine a scenario in

which your brilliant pro-
ducers have assigned you,
the programmer, to develop
a real-time 3D character-
based game. They have charged you
with the tasks of designing the game
engine and creating the production
pathway. For a variety of design, bud-
getary, and staffing reasons, you've
decided to use motion capture to sup-
ply the bulk of your animation data.

Your first task is to decide where

you're going to get this data. It does-
n't really matter whether you have
your own capture setup or a service
bureau is doing it for you — plan on
plenty of cleanup time. Motion cap-
ture is not simple. The data needs
quite a bit of massaging to get it ready
for the game, and you can get in trou-
ble by underestimating the amount of
post-production work the data needs.
You also need to be aware that motion
capture data is specific to the hierar-
chy and body dimensions of the per-

son captured. It’s possible, but tricky,
to scale this motion to other body
types and sizes. However, I would rec-
ommend getting all your data from
one session with one capture artist.
This will make your life much easier
in the long run.

Still, as an experienced production
company, you won'’t be burdened
with these details because your pro-
ducers have budgeted the motion cap-
ture session correctly. Now you need
to decide how you want this data to
come to you. Other formats exist, but
the Biovision (.BVA/.BVH) formats
and the Acclaim Motion format are
the big ones, and all the service
bureaus and animation packages sup-
port these.

Your file format decision depends on
your application and engine needs.
You can bring these formats into a
commercial animation package and
export the data from there, but the for-
mats are very compact and easy to use
with your own tool set.

I "Il refer to the character that you
apply motion capture data to as a
skeleton. The skeleton is made up of
bones. To create the character’s 1ook,
you attach geometry or weighted
mesh vertices to these bones. The
attributes that describe the position,
orientation, and scale of a bone will
be referred to as channels. By varying

LISTING 1. Sample Biovision .BVA file.

Segment: Hips
Frames: 29
Frame Time: 0.033333

that for the last couple of years, I've XTRAN YTRAN ZTRAN XROT YROT ZROT XSCALE YSCALE ZSCALE
been threatening to put out VIRTUA INCHES INCHES INCHES DEGREES DEGREES DEGREES ~ INCHES INCHES INCHES
HANGMAN as a demo at E3. I can just 0.000000 34.519684 0.000000 -14.988039 -12.240604 -3.481155 ...
see it, these realistic real-time 3D char- 0.102748 34.078739 3.159979 -15.337654 -14.320413 -3.983407 ...
acters marching up to the gallows as 0.260680 33.836613 6.487895 -16.308723 -15.090799 -3.861260 ...
you relentlessly guess letters. If we REPEATS FOR A TOTAL OF 29 FRAMES
want to be cliché, we could even have Segment: Chest
a 3D character turning the letters. Mg\
Now that would be an excessive use of ~ Frame Time: 0.033333
technology. XTRAN YTRAN ZTRAN XROT YROT ZROT XSCALE YSCALE ZSCALE
While I wouldn'’t consider using INCHES INCHES INCHES DEGREES DEGREES DEGREES ~ INCHES INCHES INCHES
motion capture for characters better 0.272156 38.993561 -1.199981 -4.022753 -0.411088 1.354611
suited to traditional keyframing, 0.413597 38.542671 1.932666 -4.371263 -0.591130 1.100887
0.560568 38.279800 5.184929 -5.020082 -0.657020 0.768863

motion capture technology clearly has
a place in game development. Luckily,

...FOR THE REST OF THE SEGMENTS

GAME DEVELOPER JANUARY 1998 http://www.gdmag.com

the value in a channel over time, you
get animation. These channels are
combined into an animation stream.
These streams can have a variable
number of channels within them.
Each slice of time is called a frame. In
most applications, animation data has
30 frames per second, though that’s
not always the case.

BiovisioN’s .BVA FORMAT. This is probably
the easiest file format to handle. It’s
directly supported by most of the 3D
animation packages. Let’s take a look at
a piece of a .BVA file (Listing 1).

This is as simple as animation data
gets. For each bone in the skeleton (or
what Biovision calls Segments), there
are nine channels of animation. These
represent the translation, rotation, and
scale values for each bone for each
frame. You'll also notice that there is
no hierarchy definition. That’s because
each bone is described in its actual
position (translation, rotation, and
scale) for each frame. This can lead to
problems, but it sure is easy to use.

LISTING 2. Sample Biovision .BVH file.

HIERARCHY
ROOT Hips
{
OFFSET 0.00

0.00 0.00

Figure 1 shows the hierar-

= ke -1 Shalsion
chy of a sample .BVA file. His = Hipe
o s Chest = LefHip
In Listing 1, we see that prien e
Hips as the first bone Hewt Lottirde
described. Th 29 Lo e e
escribed. There are LeM_coiLeg 2 Fechiee
frames of animation in the LedFoud Fighifirkle
. . . Faghillpleg = Chest
Hips. The frame time is FightL sl e e T
described as 0.03333 seconds FaghtF ol = LS houkdes
s LahiC = LefiE
(per frame), which corre- . ""I__"I‘l_l
sponds to 30 frames per sec- Labcantare = FightColler
. LakH = Right5
ond. Next comes a descrip- Fefatin ool
tion of the channels and Feghtllpdum Fighethint
. Fisghtl.cenarn = ek
units used, then the actual FigktHin Hoa!

channel data. There are 29
lines of nine values, fol-
lowed by a segment block
that describes the next bone,
and so on, continuing to the
end of the file. That’s all there is to it.
BiovisioN’s .BVH FORMAT. This format is
similar to the .BVA format in many
respects. In practice, I know of no off-
the-shelf way to import this file format
into Alias|Wavefront or Softimage,
although Biovision’s plug-in, Motion
Manager for 3D Studio MAX, reads it.

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

JOINT LeftHip

0.000000

-18.469999 0.000000

-17.950001 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

0.000000 -3.119999 0.000000

{
OFFSET 3.430000 0.000000
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftKnee
{
OFFSET 0.000000
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftAnkle
{
OFFSET 0.000000
End Site
{
OFFSET
}
}
}
}
}
MOTION
Frames: 20
Frame Time: 0.033333
0.00 39.68 0.00 0.65

http://www.gdmag.com

FIGURE 1. .BVAfile

hierarchy.

FIGURE 2. .BVH file
hierarchy.

Still, it’s an easy-to-read ASCII format
that can be useful for importing and
storing animation data. Obtaining data
in this format should be easy because
the format is supported by many
motion capture devices and service
bureaus.

The .BVH format differs from the
.BVA format in several key areas, the
most significant of which is that .BVH
can store motion for a hierarchical
skeleton. This means that the motion
of the child bone is directly dependent
on the motion of the parent bone.
Figure 2 shows a sample .BVH format
hierarchy.

In this sample, the bone Hips is the
root of the skeleton. All other bones
are children of the Hips. The rotation of
the LeftHip is added to the rotation and
translation of the Hips, and so on.

This hierarchy will certainly compli-
cate the game engine’s render loop.
Why would you want to bother? You
can do many more interesting things if
your motion is in a hierarchy. Let’s
take the example of wanting to com-
bine a “walk” motion with a “wave”
motion. In the .BVA format, there is no
relationship between the LeftUpArm and
the Hips. If we were to apply a different
motion to the different bones, nothing
would stop them from separating. A
motion hierarchy allows you to com-
bine such motions fairly easily. Also,
should we ever want to add inverse
kinematics or dynamics to the game
engine, a hierarchy would make this
possible.

Listing 2 shows a fragment of a .BVH
file. The word HIERARCHY in the first line
signifies the start of the skeleton defini-
tion section. The first bone that is

JANUARY 1998 GAME DEVELOPER

defined is the ROOT. This bone is the par-
ent to all other bones in the hierarchy.
Each bone in this hierarchy is defined as
a JOINT. Braces contain the root and each
joint. All joints within a set of braces are
the children of that parent joint.

Within each braced block is the
OFFSET and CHANNELS definition for that
bone (or JOINT). The OFFSET describes dis-
placement of the root of the bone from
its parent. This (x,y,z) coordinate is the
world coordinate offset from the par-
ent bone. In the example, the Hips bone
is located at offset (0,0,0) and the
LeftHip is 3.43 world units away from
the Hips in the x axis.

The CHANNELS line defines which
bone parameters will be animating in
the file. The first parameter is the
number of channels animated for
this bone. Next is a data type for each
of these channels. The possible types
are: Xposition, Yposition, Zposition,
Xrotation, Yrotation, and Zrotation. Note
that the scale channels have been
dropped in the .BVH format.
Normally, only the root bone has any
position data — the rest of the bones
have only rotational data and rely on
the root and the hierarchy for their
position. The CHANNELS can be in any
order. This order defines the
sequence in which the operations
need to be processed in the playback.
For example, in the LeftAnkle joint,
the order of channels is Zrotation
Xrotation Yrotation, meaning that the
bone is first rotated around the z
axis, then the x axis, and finally the y
axis. This becomes important when
we try to display the data.

The branch of the hierarchy ends
with the End Site joint. This joint is off-
set is only useful in determining the
length of the last bone.

GAME DEVELOPER

JANUARY 1998

Following the HIERARCHY section is the
MOTION section. This section actually
describes the animation of each bone
over time. As in the .BVA format, the
first two lines of this section describe
the number of frames and the time
for each frame. However, unlike the
.BVA format, the next lines describe
the animation for all the bones at
once. In each line in the rest of the
MOTION section, there is a value for
every CHANNEL described in the HIERARCHY
section. For example, if the HIERARCHY
section describes 56 channels, there

will be 56 values on each line of
the MOTION section. That continues
for the total number of frames in
the animation.

That’s it for the .BVH format.
While it’s a bit more complex, it
gives the programmer designing the
engine greater flexibility.

AccLAIM SKELETON FORMAT. This is the
most complicated of the three file
formats. It’s also the most compre-
hensive, and supported by most of
the 3D animation packages. An
Acclaim motion capture file is actual-
ly made up of two files; the .ASF,

MOTION CAPTURE

which describes the actual skeleton and
its hierarchy, and the .AMC file, which
contains the motion data. The separa-
tion of these two files has a nice benefit.
In a single motion capture session, you
can have one .ASF file that describes the
skeleton and multiple .AMC motion
files. The Acclaim format is such a tech-
nical and complex file format that this
overview may not provide all the need-
ed information. Documents describing
the format in greater detail are available
on the Game Developer web site
(http://www.gdmag.com).

The .ASF file is
similar to the
HIERARCHY section
of the .BVH file
in many ways.
Both files
describe the
joints and the
hierarchy, but
the .ASF file
extends this a
bit. Listing 3 dis-
plays a portion
of an Acclaim
.ASF file.

In this file for-
mat, lines begin-
ning with a
pound sign (¥)
are ignored. The
.ASF file is divid-
ed into sections.
Each section
starts with a key-
word preceded
by a colon. The
section contin-
ues until anoth-
er keyword is
reached. The
:version, :name,
and :documentation
section are self-explanatory. The :units
section describes a definition for all
values and units of measure used.

The :root section describes the parent
of the hierarchy. The axis and order ele-
ments describe the order of operations
for the initial offset and root node
transformation. The position element
describes the root translation of the
skeleton and the orientation element
defines the rotation.

The :bonedata keyword starts a block
that describes all of the remaining
bones in the hierarchy. Each bone is
delimited by begin and end statements.

http://www.gdmag.com

LISTING 3. Sample Acclaim .ASF file.

:version 1.10
:name BioSkeleton
:units
mass 1.0
length 1.0
angle deg
:documentation
Data translated and provided by
BioVision Motion Capture Studios
:root
axis XYZ
order TX TY TZ RZ RY RX
position 0.0 0.0 0.0
orientation 0.0 0.0 0.0
:bonedata
begin
id 1
name hips
direction 0.000000 1.000000 0.000000
length 0.000000
axis 0.00000 0.00000 0.00000 XYz
dof rx ry rz
Limits (-180.0 180.0)
(-180.0 180.0)
(-180.0 180.0)
end
begin
id 2
name hipsi
end
:hierarchy
begin
root body_rootl
body_rootl hips
hips hipsl hips2 hips3

end

This bone description section is what
makes the Acclaim format very useful.

The id and name elements describe
the bone by number or string. The ini-
tial rest position of the bone is
described by the direction vector, and
the length describes the physical length
of the bone. The axis parameter
describes the global orientation via an
axis vector, and the token letters xyz
describe the order of rotations. Not
included in the sample are two option-
al elements: bodymass, which defines the
mass of the bone, and cofmass which
pinpoints the center of mass via a dis-
tance along the bone.

The dof element describes the degrees
of freedom possible in the bone. This is
a list of tokens. The possible values are

http://www.gdmag.com

LISTING 4. Sample .AMC file.

:FULLY-SPECIFIED
:DEGREES
1

root -1.244205 36.710186 7.591899 0.958161 4.190043 -18.282991

hips 0.000000 0.000000 0.000000

chest 15.511776 -2.804996 -0.725314

neck 48.559605 0.000000 0.014236

head -38.332661 1.462782 -1.753684
leftcollar 0.000000 15.958783 0.921166
leftuparm -10.319685 -15.040003 63.091194
leftlovarm -27.769176 -15.856658 8.187016
lefthand 2.601753 -0.217064 -5.543770
rightcollar 0.000000 -8.470076 2.895008
rightuparm 6.496142 9.551583 -57.854118
rightlowarm -26.983490 11.338276 -5.716377
righthand -6.387745 -1.258509 5.876069
leftupleg 23.412262 -5.325913 12.099395
leftlowleg -6.933442 -6.276054 -1.363996
leftfoot -1.877641 4.455667 -6.275022
rightupleg 20.698696 3.189690 -8.377244
rightlouleg 3.445840 -6.717122 2.046032
rightfoot -8.162314 0.687809 9.000264

2

root -4.232432 36.723934 9.596100 -7.051147 1.678117 -7.711937

hips 0.000000 0.000000 0.000000
chest 31.863499 -19.017111 6.490547

tx, ty, tz, 1x, 1y, 1z, and L. The first of
these six define freedom to translate
and rotate around the three axes. The
last dof defines the bone’s ability to
stretch in length over time. Each of
these tokens represents a channel that
will be present in the .AMC file in that
order. The order of these channel
tokens also describes the order of opera-
tions in the transformation of the bone.

The limits element is very interesting.
It describes the limits of the degrees of
freedom. It consists of value pairs of
either floats or the keyword inf, mean-
ing infinite. This information can be
useful for setting up an inverse kine-
matic or dynamic 3D character.

The next section in the .ASF file is
:hierarchy. Just as it sounds, it describes
the hierarchy of the bones declared in
the :bonedata section. It’s a begin...end
block in which each line is the parent
bone followed by its children. From
this information, the bones should be
connected together in the proper hier-
archy. Figure 3 displays the hierarchy
in the sample .ASF file.

The .AMC file defines the actual chan-
nel animation. Listing 4 contains a sam-
ple .AMC fragment. Each frame of ani-
mation starts with a line declaring the

JANUARY 1998

frame number. Next is the bone anima-
tion data, which is comprised of the
bone name and data for each channel
defined for that bone. This information
was defined in the dof section of each
bone in the .ASF file. The frame sections
in the file continue until the end of the
file. After the complexity of the .ASF file,
the .AMC looks pretty simple.

= Skeleton
= hips
= hipz1
=1 chest
=} chestl
= neck
head
= chest2
=1 eftcollar
=1 leftupsim
=1 keftiowwarm
ledthand
—I- chest3
=] rightcollar
=1~ nighbuparm
=] tighthowsarm
lighthand
= hips2
=1 lethupleg
=1 lefilowleq
Ieftfoot
= hips3
= nghtuplag
=1 rightlowleg
rightfoat

FIGURE 3. .ASF file hierarchy.

GAME DEVELOPER

- = FH-L}
[T e S

|slu] Ql@loipin]

Pipeline,” Casey
Muratori, Game
Developer,
February/March 1997,
pp-38-41). The order in
which you perform
these operations is criti-
cal to getting the
expected result.

Because I wanted my
motion capture viewer
to support several differ-
ent file formats, it was
important to take opera-
tion order into account.
I created a series of

LI Nim

FIGURE 4. Asample animation in OGLView.

You should be aware of one impor-
tant aspect of the Acclaim and .BVH
formats. While both formats can store
rotations in arbitrary order, both
Softimage and Alias|Wavefront expect
the order of rotations to be tx, ty, tz, rx,
ry, rz. This is important if you plan on
going back and forth between the game
engine and one of these packages.

nce you have your data in a for-

mat that you're happy with, it’s
time to start working on it. I've created
an application that loads motion cap-
ture files of different formats and
allows the user to play them back. You
can download it from the Game
Developer web site. When full produc-
tion kicks in, such tools are very useful
for file conversion and formatting.
Also, it serves as a good test application
to try out new ideas and benchmark
code.

I decided to create the motion cap-
ture viewer as a MFC OpenGL applica-
tion — I find it very quick and easy to
create tools this way. If you're careful
about how you design the tool, much
of the code can be used directly in the
game engine itself. Figure 4 shows a

#define STREAM_TYPE_NONE 0
#define STREAM_TYPE_SRT

. . #define STREAM_TYPE_TRANS 2
fi@%f:?;gﬂﬁg;hat has been loaded ¥define STREM_TYPERIYZ 4
DATA REPRESENTATION. As we saw from RELR LN 2 "
the different file formats, there are #def.?ne STREACIIREA RS L
several ways to store the animation #datine STREA.TIPERZYX \

#define STREAM_TYPE_RXZY 64

data from a motion capture session.

. . #define STREAM_TYPE_RYXZ 128

o
remember from 3D matrix ;nath tha}‘i R RN E T .
#define STREAM_TYPE_INTERLEAVED 1024

matrix multiplication is noncommu-
tative (see “Inspecting the 3D

GAME DEVELOPER JANUARY 1998

MOTION CAPTURE

stream IDs that describe the order of
channels in each stream.

Listing 5 shows the stream types that
I've needed. These are not all the possi-
bilities, but they are the ones that I've
found useful. By creating separate
stream types for single operations such
as STREAM_TYPE_TRANS and STREAM_TYPE_RXYZ, 1
decrease stream size while animating.
This operation isn’t as important when
the animation can fit in RAM, but it
becomes critical when you have to
stream animation off of a CD-ROM or
the Internet.

Next, I created a data structure to
represent a bone (Listing 6). I chose to
store the transformation information
as separate scale, translation, and
rotation vectors instead of a global
transformation matrix. This made it
much easier to handle the different
channel types. I also find the rotation
values, called Euler angles, easy to
understand while debugging.
Conversion to and from quaternions
for animation or a transformation
matrix can also be done easily. Once
the data format for a game engine is
set, this can be optimized.

Looking at the primStreamType,
primStream, and primFrameCount fields, it
seems curious that I would want to
have a motion stream for each bone.
It would certainly be easier to have
one animation stream that contains
all the data for all the bones in the
skeleton. However, this method allows
the flexibility to have different stream
types per bone. This can be useful
because it allows me to attach com-
pletely different motions to the indi-
vidual bones. Imagine a character in a
walk cycle. The legs and hips are

LISTING 5. STREAM definitions from Skeleton.H.

/11 STREAM Definitions //////111I1ITIIIIILEIIELIEL TN DN E T

// NO STREAM APPLIED

// SCALE ROTATION AND TRANSLATION

// STREAM HAS TRANSLATION (X Y Z) ORDER
// ROTATION (RX RY RZ) ORDER

// ROTATION (RZ RX RY) ORDER

// ROTATION (RY RZ RX) ORDER

// ROTATION (RZ RY RX) ORDER

// ROTATION (RK RZ RY) ORDER

// ROTATION (RY RX RZ) ORDER

// SCALE ONLY

// TRANSLATION ONLY (X Y Z) ORDER

// THIS DATA STREAM HAS MULTIPLE STREAMS

LT

http://www.gdmag.com

affected by the wvalk stream. Suppose I
then attach a vave stream to the right
arm. Now I have a walking and wav-
ing character. We can also begin to
plan for the possibility of blending
animations together to create dynam-
ic motions on the fly.

DisPLAY METHODS. Now that I have all
this data loaded, I have to display it
in a way that provides the most infor-
mation possible. In my tool, I chose
to represent each bone of the skeleton
as an axis. The axes are colored red
for x, green for y, and blue for z. An
arrow indicates the positive direction
in each axis. Since I was using
OpenGL to create my motion capture
tool, this seemed like a good opportu-
nity to use display lists. Display lists
are a method that OpenGL uses to
optimize sequences of commands.
Listing 7 contains the OpenGL com-
mands that I used to create a simple
colored axis.

I also created a hierarchy browser
using the CTreeCtl class in MFC. This
gives a nice visual representation of
how the skeleton is laid out. From
there, it’s easy to add dialog boxes to
edit bone settings, a more proper ani-
mation control window, andso on.

The animation is all handled via a
Windows timer event. This isn’t the
fastest way to animate a Windows
application, but it’s plenty fast for this
demonstration. There’s a very good dis-
cussion on animating OpenGL
Windows applications in Ron Fosner’s
book, OpenGL Programming for Windows
95 and Windows NT. I recommend this
book and the OpenGL Super Bible by
Wright and Sweet to any Windows
OpenGL programmer.

The source code and executable for
this application, along with sample
motion files and two documents describ-
ing the Acclaim file format can be found
on the Game Developer web site. m

Acknowledgements

| wish to give a special thanks to those
who contributed necessary information
and assets: House of Moves
(www.moves.com) and Biovision
(www.biovision.com) for sample motion
files; and Richard Hince of Probe and
Richard Barfield of Oxford Metrics Limited
for information on the Acclaim Motion file
format.

http://www.gdmag.com

LISTING 6. Structure definition from Skeleton.h.

struct t_Bone

{

long id; // BONE ID
char name[80];

// HIERARCHY INFO

t_Bone *parent;

int childCnt;
t_Bone *children;

// TRANSFORMATION INFO
tVector b_scale;
tVector b_rot;

tVector b_trans;
tVector scale;

tVector rot;

tVector trans;

// ANIMATION INFO

DWORD primStreamType;
float *primStream;
float primFrameCount;
float primCurFrame;

// REST OF STRUCTURE DECLARATION

// BONE NAME

// POINTER TO PARENT BONE
// COUNT OF CHILD BONES
// POINTER TO CHILDREN

// BASE SCALE FACTORS

// BASE ROTATION FACTORS

// BASE TRANSLATION FACTORS
// CURRENT SCALE FACTORS

// CURRENT ROTATION FACTORS

// CURRENT TRANSLATION FACTORS

// WHAT TYPE OF PRIMARY STREAM IS ATTACHED
// POINTER TO PRIMARY STREAM OF ANIMATION
// FRAMES IN PRIMARY STREAM

// CURRENT FRAME NUMBER IN STREAM

LISTING 7. Display list code from OGLView.CPP

// CREATE THE DISPLAY LIST FOR AN AXIS WITH ARROWS POINTING IN
// THE POSITIVE DIRECTION Red = X, Green = Y, Blue = Z

glNewList(OGL_AXIS_DLIST,GL_COMPILE);
glBegin(GL_LINES);

glColor3f(1.0f, 0.0f, 0.0f);
glVertex3f(-0.2f, 0.0f, 0.0f);
glVertex3f(0.2f, 0.0f, 0.0f);
glVertex3f(0.2f, 0.0f, 0.0f);
glVertex3f(0.15f, 0.04f, 0.0f);
glVertex3f(0.2f, 0.0f, 0.0f);
glVertex3f(0.15f, -0.04f, 0.0f);
glColor3f(0.0f, 1.0f, 0.0f);
glVertex3f(0.0f, 0.2f, 0.0f);
glVertex3f(0.0f, -0.2f, 0.0f);
glVertex3f(0.0f, 0.2f, 0.0f);
glVertex3f(0.04f, 0.15f, 0.0f);
glVertex3f(0.0f, 0.2f, 0.0f);

glVertex3f(-0.04f, 0.15f, 0.0f);

glColor3f(0.0f, 0.0f, 1.0f);
glVertex3f(0.0f, 0.0f, 0.2f);
glVertex3f(0.0f, 0.0f, -0.2f);
glVertex3f(0.0f, 0.0f, 0.2f);
glVertex3f(0.0f, 0.04f, 0.15f);
glVertex3f(0.0f, 0.0f, 0.2f);
glVertex3f(0.0f, -0.04f, 0.15f);
glEnd();
glEndList();

JANUARY 1998

// X AXIS STARTS - COLOR RED

// TOP PIECE OF ARROWHEAD

// BOTTOM PIECE OF ARROWHEAD

// Y AXIS STARTS - COLOR GREEN

// TOP PIECE OF ARROWHEAD

// BOTTOM PIECE OF ARROWHEAD

// Z AXIS STARTS - COLOR BLUE

// TOP PIECE OF ARROWHEAD

// BOTTOM PIECE OF ARROWHEAD

GAME DEVELOPER

	back:

