Over My Dead,
Polygonal Body

pened yet no matter how many times I
see life-like organic aliens and robotic
bipeds trotting all over the screen.

The trouble is, humans are tough to
simulate, regardless of how long we
take to create the image. It may be
obvious, but the difficulty lies in the
fact that we are all very familiar with
how humans look. We see them all the
time. In the morning, I see something
resembling a human in the mirror
while I shave. Living as I do along the
coast, I often see more of the human
form than is probably healthy both for
my ego and my digestion. In everyday
life, we see all varieties of people per-
forming every imaginable action. Each
of us is an expert in determining the
believability of a CG human form. If
the skin looks wrong or the motion
looks stiff or the lip-synch is off, each
of us screams, “Fake!”

But, these technical and artistic
problems are solvable. The brilliant
artists and technicians charged with
making us believe will make sure that
it happens. I have thought a bit about
the problems this will present, howev-
er. I think about John Wayne. What if,
while he was alive, he was asked to do
a commercial for beer? Perhaps his
answer would have been, “Over my
dead body!” That used to mean some-
thing, that there was no way that you
would ever get me to do something. A
bit of stock video footage and some
clever video processing tricks and
voila — John Wayne’s dead body sell-
ing beer.

Now don’t get me wrong. I see
nothing wrong with a family member
licensing the likeness of a relative for
commercial or charitable purposes. I

http://www.gdmag.com

think most people would be glad to
continue to provide a living for their
family even after they have gone from
this life. I just think technology has
forced us to reexamine that particular
ultimatum. Perhaps it is time for
something like, “Over my dead body
and virtually extinct telepresence.”
Kind of loses that Wild West charm,
doesn’t it?

oncerns over these kinds of legal

dilemmas are not going to stop
me from doing my job, however. As a
creator of real-time 3D graphics, I not
only face the hurdles which confront
my visual effects comrades, but I also
need to make these realistic characters
move fast. Fortunately, in this task,
technology is on my side.

Realistic characters require lots of
polygons to make them look realistic.
Lots of polygons mean lots of vertices
being transformed by an overwhelmed
CPU. At Siggraph 1998 I began to see
the emergence of transformation
acceleration in the consumer graphics
hardware space (see “Taking a Break
for Siggraph,” Graphic Content,
October 1998). At that time, I thought
it wouldn’t be long before we would
be able to take advantage of hardware
acceleration for transformation and
lighting (HW T&L) in our games.
Well, Siggraph has come and gone

mazing things have been created with computer graphics over the past
several years. Visual effects companies are poised to tackle one of the
most difficult challenges in computer-generated (CG) imaging: creating

a realistic CG human character. However, in my opinion, it hasn’t hap-

again and we are starting to see this
become a reality.

One consumer graphics chip com-
pany, Nvidia, has publicly committed
to delivery of hardware transforma-
tion and lighting with their next gen-
eration of graphics chips. There are
rumblings that others are likely to
deliver on this promise as well. In fact,
Microsoft is so certain that hardware
T&L will be a reality in the consumer
hardware market, they have included
support for it in the next version of
the DirectX game programming AP]I,
DirectX 7. Game developers who are
scheduling projects for release in the
next production cycle need to consid-
er how their projects will handle hard-
ware T&L.

ortunately, the driver writers will

do most of the work for us. Games
using the transformation and lighting
pipeline in OpenGL will take immedi-
ate advantage of the hardware if it’s
available. Now, with the introduction
of DirectX 7, games supporting this API
will also transparently benefit from the
new hardware. By using the built-in
transformation pipeline in either API,
games will get faster.

This will naturally enable games to
increase polygon counts without sacri-
ficing performance. It also means that
the load on the CPU will decrease,

jeffl@darwin3d.com.

When not being frightened by the idea of virtual versions of himself, Jeff creates 3D
graphics for Darwin 3D. Let him know he is just being paranoid by e-mailing him at

OCTOBER 1999

GAME DEVELOPER

FIGURE 1B. Skeletal deformation systems offer both flexi-
bility and good looks.

FIGURE 1A. Modeling organic objects is a challenge for 3D
programmers dealing with hardware T&L.

allowing more processor time for game play features such as Since we the graphics programmers can gain this benefit
artificial intelligence and game physics. And, as to be expect- without doing any real work, hardware T&L doesn’t seem to
ed, creating content that performs well on a variety of user affect us much. The programmer will need to conform to a
system configurations will be more important than ever. standard pipeline. For the transformation, this doesn’t seem
to be a big deal. Most 3D programmers are com-
fortable with matrix manipulation of vertices.
The problem is pretty well solved and the only

GLvoid COGLView: :GetBaseSkeletonMat(t_Bone *rootBone) issue of trust revolves around the quality of the

{ driver implementation. Once the hardware is
/11 Local Variables //////111111111111111111111111111110100110100110LLEETTTTT 1T doing the work, the driver issue largely goes
int loop; away. Most will gladly accept this pathway to

t_Bone *curBone; hardware nirvana.
tMatrix tempMatrix; Lighting, however is a much more con-
s tentious issue. No one I have talked to is satis-
curBone = rootBone->children; fied with the lighting model provided by the
for (loop = 0; loop < rootBone->childCnt; loop++) OpenGL and DirectX libraries. This issue does-
{ n’t bug me that much. I don’t know anyone
glPushMatrix(); who is ready to give up lighting tricks such as
shadow maps and texture-mapped lighting for
glTranslatef(curBone->b_trans.x, curBone->b_trans.y, curBone->b_trans.z); simplistic Gouraud lighting. While we do need
a hardware solution for realistic lighting, this is

// Set observer’s orientation and position

glRotatef (curBone->b_rot.z, 0.0f, 0.0f, 1.0f);
glRotatef (curBone->b_rot.y, 0.0f, 1.0f, 0.0f);
glRotatef (curBone->b_rot.x, 1.0f, 0.0f, 0.0f);

// Grab the Matrix that is built up to this point
glGetFloatv(GL_MODELVIEW_MATRIX,tempMatrix.m);

// Invert this matrix to get the Base->World matrix
InvertMatrix(tempMatrix.m,curBone->baseToWorldMat.m);

// Recursive call if the bone has children
if (curBone->childCnt > 0)
GetBaseSkeletonMat(curBone);

glPopMatrix();

curBone++;

GAME DEVELOPER OCTOBER 1999

not it. I advise continued reliance on those
lighting tricks. However, as a supplement to
pre-computed lighting for dynamic changes or
shadow computation, a few hardware point and
spot lights couldn’t hurt, particularly if they’'re
fast. I can think of a lot things that a few lights
could be used for.

No, simple transformation and lighting is not
the problem with hardware T&L. We run into
the real trouble when we consider what it means
for modeling organic objects.

H ardware transformation is ideally suited to
the display of rigid objects. You first set up
the transformation matrix and then submit an
object to be drawn. With hardware, it will be
costly to obtain the results of the transformation

http://www.gdmag.com

before the object is drawn. This means everything needs to
be set up beforehand.

That’s fine for most objects and environments. However,
characters do not look their best when composed of rigid
objects. As I have explored in a previous article (“Skin
Them Bones,” Graphic Content, May 1998), creating a
character from a single mesh and then deforming it via a
skeletal system provides a better solution. By using skeletal
deformation, you maintain the good looks of a seamless
mesh and the animation flexibility of a hierarchical char-
acter system.

Unfortunately, this system requires manipulation of ver-
tex coordinates. Let me review how a skeletal deformation
technique works. I have a character in a rest pose in Figure
1a and have created a skeleton for the character in Figure 1b.

In order to deform the mesh with the skeleton, I need to
assign each vertex to a bone or set of bones. For example, all
of the vertices in the head region should be assigned to the
head bone. For now, let me assume that the vertices in the
character’s head are completely, or 100 percent, assigned to
the head bone.

I can determine the position and orientation of the head
bone at the rest frame by creating a matrix that represents
the transformation needed to move that bone from the ori-
gin to its location in the hierarchy. The matrix of each bone
is dependent on the matrices of all of its parents, so it is nec-
essary to traverse the entire hierarchy to determine this
World->RestBone matrix.

Now this matrix will take a vertex and transform it to the
location of the bone. However, when I am taking the rest
position of character, I will need to know how to take a ver-
tex in the mesh and transform it back to the origin.
Fortunately, since we are using a matrix operation here, this
is a simple matter of inverting the World->RestBone matrix with
a standard 4x4 matrix inversion routine. I now have a
RestBone->World matrix. This only needs to be done once, so I
can store this matrix for later use. You can see the code for
computing the RestBone->World matrix in Listing 1.

I now have the matrix I need to move any vertex from the
rest position back to the origin. Now I want to move the ver-
tex to its final pose like the one in Figure 2. I can do this vir-

4)

FIGURE 2A. Our matrix enables us to move the skeleton’s
vertices to our character’s final pose.

http://www.gdmag.com

tually the same way. I go through the hierarchy and create a
matrix for each bone that will take a vertex from the origin
and move it to the bone position in that animation frame.
For this World->Bone matrix, I don’t need to invert it.

I now have everything I need to take a rest vertex and
move it to the final position. The procedure is as follows:
worldVertex = baseModelVertex * restBoneToWorldMat
deformedVertex = worldVertex * worldToBoneMat

There is an easy optimization step, though. Because two
matrices can be multiplied together to create a matrix that is
a sum of both transformations, I can create one matrix that
will do everything:
combinedMatrix = worldToBoneMat * restBoneToWorldMat
Then for each vertex, I simply multiply it by that one
matrix:
deformedVertex = worldVertex * combinedMatrix

This is the key to skeletal deformation. If you want to
have multiple bones influencing a vertex, this final formula
can be scaled by the amount of influence, or weight, of each
bone. The sum of all the weights for each vertex should
equal 1.

his process requires each vertex to be transformed by a

matrix for every bone that influences it. Clearly, this
process should benefit greatly by the use of hardware trans-
formations. However, this really breaks the transformation
pipeline. It's obviously possible for a single polygon to have
vertices that are influenced by multiple bones. Therefore, it
is not possible simply to set the transformation matrix and
submit a polygon, let alone an entire character.

In order for this to work, I would need to do the matrix
operations first, combine the resulting vertices into a single
polygon, and submit that to be drawn. However, the pipeline
doesn’t allow this. Getting the results of a transformation is
not a fast process, as it requires values to be returned from
the driver through a mechanism such as feedback.

This is precisely why it’s crucial that this type of operation
be handled by the driver via the graphics API. It’s impossible

FIGURE 2B. Our finished model, the beneficiary of our
transformation matrix.

OCTOBER 1999 GAME DEVELOPER

typedef struct tVertex
{
float x, y, z;
float weight;
D3DCOLOR color;
D3DCOLOR specular;
float u;
float v;
} tVertex;

#define FVF_VERTEX (D3DFVF_XYZ | D3DFVF_XYZB1 | D3DFVF_DIFFUSE | \
D3DFVF_SPECULAR | D3DFVF_TEX1)

for (int loop = 0; loop < curBone->visuals[0].faceCnt; loop++)

{
tFace *face;
face = &curBone->visuals[0].face[loop];
// There are two Matrices stored for each vertex
d3ddev.SetTransform(D3DTRANSFORMSTATE_WORLD, face->matrix1);
d3ddev.SetTransform(D3DTRANSFORMSTATE_WORLD1, face->matrix2);

vertex = (tVertex *)curBone->visuals[0].vertex;

to perform this kind of deformation without breaking the
transformation pipeline. Now many people are against the
idea of adding API features for specific effects such as this,
but I see no other way to achieve the goal. If the transforma-
tion could be handled as a specific DSP operation that was
not tied directly to the display, it would be possible to have
simple accelerated matrix operations. However, this is not
the direction the hardware development is heading.

HRESULT hr = d3ddev.DrawPrimitive(D3DPT_TRIANGLELIST, FVF_VERTEX, vertex, 3, 0);

icrosoft, while creating DirectX 7, realized that this

would be an issue. To solve the problem, they created
the notion of “vertex blending.” In vertex blending, the
final position of a vertex can be determined by the weighted
transformation of up to four matrices.

You set up the matrices by creating a transformstate with
the function:

SetTransform(D3DTRANSFORMSTATE_WORLD, matrix1);
SetTransform(D3DTRANSFORMSTATE_WORLD1, matrix2);
SetTransform(D3DTRANSFORMSTATE_WORLD2, matrix3);
SetTransform(D3DTRANSFORMSTATE_WORLD3, matrix4);

By using the flexible vertex format, you submit weights in
each vertex structure. The number of weights is one less
then the number of matrices being used. This is so that the
API can enforce the constraint that the sum of the weights
must equal 1.

For example, if I wanted each vertex to be weighted by
two different bones, I would use code that looks something
like Listing 2. There are some problems with this approach,
however. First, the API supports blending of between one
and four matrices. This leads to a content creation issue. If

GAME DEVELOPER OCTOBER 1999

LISTING 2. Vertex blending solves some problems, but creates others. a particular card supports blending of only
two matrices and your content was

designed for blending four, you will need
to clamp and scale the weights to work.
This is yet another restriction for content
creators.

Secondly, you set the matrices for each
primitive instead of each vertex. Each prim-
itive submitted to the rasterizer must be
composed of vertices that are blended
among the same bones. This can be a prob-
lem in certain regions such as the shoulder
or waist where it would be quite easy to
have each vertex influenced by a different
bone.

Finally, to submit primitives efficiently
for rendering, the model will need to be
sorted on matrix usage. This may mean
rearranging your dataset with a sophisticat-
ed export utility or custom optimization
tool.

While it will be possible to create content
to match these restrictions, it won’t be
easy. Naturally, artists won’t enjoy being
limited in their methods of weighting, and
tools will need to be developed to handle
the requirements.

u nfortunately, at this time, there is no way to achieve a
similar functionality in OpenGL using transformation
hardware. The OpenGL community needs to step up and
design an extension that will provide access to this hardware
capability.

I would prefer an extension that provides more function-
ality with fewer restrictions. I imagine a vertex accumulation
buffer much like the compiled vertex arrays we have now. In
this version, you set a transformation matrix and submit a
series of vertices with associated weight values. These are
multiplied, scaled, and accumulated. Once all the vertices
have been processed, the entire mesh is drawn with this
accumulated vertex array.

This system would have no restrictions on the number of
matrices in the blend. It would also have the side benefit of
enabling many other interesting 3D effects such as morph-
ing. I am not sure if this kind of extension could work with
hardware as it exists now but I hope to find out. I'll keep
you posted.

have provided a couple of demonstrations on the Game

Developer web site (http://www.gdmag.com). Both of
them allow you to manipulate a hierarchical skeleton to
deform a 3D mesh. One was created using DirectX 7 and the
vertex blending function, the other was created using
OpenGL and implements the method I described above. Let
me know how you think the algorithm can be improved.

http://www.gdmag.com

