Backy

The Ocean Spray in Your Face

udging by the number of times the question comes up in public forums such

as Usenet, particle systems are a pretty hot issue. This may be partially a result

of the phenomenal success of QUAKE, with its use of particles for smoke,

blood trails, and spark falls.

B ut certainly, the interest in parti-
cle systems has something to do
with their ability, more so than any
other computer graphics method, to
create realistic natural phenomena in
real time. William Reeves realized this
all the way back in 1982 and 1983.
When working on Star Trek II: The
Wrath of Khan, he was in search of a
method for creating realistic fire for the
Genesis Demo sequence. Reeves real-
ized that conventional modeling,

http://www.gdmag.com

which was best at creating objects that
have smooth, well-defined surfaces,
wouldn’t do the trick. The objects that
made up these effects were not made of
easily definable surfaces. These objects,
which he termed “fuzzy,” would be
better modeled as a system of particles
that behaved within a set of dynamic
rules. Particles had been used previous-
ly to create natural effects such as
smoke and galaxies of stars, but were
difficult to control. Reeves realized that
by applying a system of rules to parti-
cles, he could achieve a chaotic effect
while maintaining some creative con-
trol. Thus was born the particle system.

How Does It Work?

Aparticle system is basically just a
collection of 3D points in space.

Unlike standard geometry objects, par-
ticles making up the system are not sta-
tic. They go through a complete life
cycle. Particles are born, change over
time, and then die off. By adjusting the
parameters that influence this life

path, each particle can have a random
element that modifies its behavior. It’s
this random element, called a stochas-
tic process (a good nerd party word),
that makes the effect look very organic
and natural. This month, I'm going to
create a real-time particle system that
will show off the basic techniques as
well as some eye-catching effects you
can create.

The Particle

L et’s start by looking at what prop-
erties are needed in a particle.
First, I need to know the position of
the particle. I'm going to store the pre-
vious position as well, because I also
want to be able to antialias the parti-
cles easily. I need to know the direction
in which the particle is currently trav-
eling. This can be stored as a direction
vector. I also need to know the current
speed at which this particle is traveling
in that direction, but speed can simply
be combined with the direction vector
by multiplication. I'm going to render

cycle, you
SRURUICACIN | |STING 1. The Particle Structure.
different
types of struct tParticle
effects. {

Another tParticle *prev,*next; // LINK
key point tlector pos; // CURRENT POSITION
regardin tVector prevPos; // PREVIOUS POSITION

garding tlector dir; // CURRENT DIRECTION WITH SPEED
particle int Life; // HOW LONG IT WILL LAST
systems is tColor color; // CURRENT COLOR OF PARTICLE
that they tColor prevColor; // LAST COLOR OF PARTICLE
are chaot- tColor deltaColor; // CHANGE OF COLOR
ic. That is, b5
instead of
}clsgllnfgefe Jeff is a complex particle system at Darwin 3D. E-mail him at

pietes jeffl@darwin3d.com. But beware that his replies are subject to stochas-
ly prede- S
. tic reliability.

termined

JULY 1998 GAME DEVELOPER

particles as colored points, so I also
need to know the current color of this
particle and the previous color for
antialiasing. In order to change the
color over time, I'm going to store the
amount of change in color per frame
also. The last piece of information that
I need is the life count for this particle.
This is the number of frames that this
particle will exist before dying.

You can see a data structure for my
particles in Listing 1. If you wished to
make your particle system more com-
plex, it would be very easy to add prop-
erties here. You could animate the size
of the particles by adding a size, the
transparency by adding an alpha com-
ponent to the color. You could further-
more add mass, other physical proper-
ties, or any number of other variables.

The Emitter

he particle emitter is the entity

responsible for creating the parti-
cles in the system. This is the object
that you would drop around in a real-
time 3D world to create different
effects. The emitter controls the num-
ber of particles and general direction in
which they should be emitted as well as
all the other global settings. The struc-
ture for the emitter is in Listing 2. This
is also where I set up the stochastic
processes that I was talking about. For
example, emitNumber is the average num-
ber of particles that should be emitted
each frame. The emitVariance is the ran-
dom number of particles either added

GAME DEVELOPER JULY 1998

or subtracted from base emitNumber. By
adjusting these two values, you can
change the effect from a constant,
steady stream to a more random flow.
The formula for calculating how many
particles to emit each frame is
particleCount = emitNumber + (emitVariance #
RandomNum()) ;

Where RandomNum() is a function that
returns a number between -1.0 and 1.0.

These techniques are also used to vary
the color, direction, speed, and life span
of a particle. The color is a special case
because I want the color to change over
the life span of the particle. I calculate
two randomly varied colors as above
and then divide the difference between
them by the life. This creates the color
delta that is added to each particle each
frame of its life.

I now need to describe the direction
in which the particles should be emit-
ted. We really only need to describe two
angles of rotation about the origin
because the particles are single points in
space, and I'm not concerned with the

spin. Those two angles are the rotation
about the y axis (yaw or azimuth
defined by 6) and the rotation about the
x axis (pitch or inclination defined by
). These angles are varied by a random
value and then converted to a direction
vector for each particle.

The conversion process for generating
this direction vector is pretty easy. It
requires some general 3D rotation tech-
niques and some basic matrix math.

A rotation about y is defined as

X' = x*cos(B) + z*sin(0);

Y=Y

7' = -x*sin(6) + z*cos(0)

or, in matrix form,

[¢os(8) 0 -sin(6)O
Roty®=H0 1 0
Hin®) 0 cos®)f

A rotation of about x is
x' =X;

y' = y*cos(y) - z*sin(y);
z' = y*sin(y) + z*cos(y)
or

LISTING 2. The emitter structure.

struct tEmitter

{
long id;
char name[80] ;
long flags;
// TRANSFORMATION INFO
tVector pos;
float yaw, yawVar;
float pitch, pitchVar;
float speed,speedVar;
// Particle
tParticle *particle;
int totalParticles;
int particleCount;
int emitsPerFrame, emitVar;
int life, lifeVar;
tColor startColor, startColorVar;
tColor endColor, endColorVar;
/] Physics
tVector force;

// EMITTER ID
// EMITTER NAME
// EMITTER FLAGS

// \YZ POSITION
// YAY AND VARIATION
// PITCH AND VARTATION

// NULL TERMINATED LINKED LIST
// TOTAL EMITTED AT ANY TIME

// TOTAL EMITTED RIGHT NONW

// EMITS PER FRAME AND VARTATION
// LIFE COUNT AND VARIATION

// CURRENT COLOR OF PARTICLE

// CURRENT COLOR OF PARTICLE

// GLOBAL GRAVITY, WIND, ETC.

b

LISTING 3. Converting rotations to a direction vector.

OO]

// Function: RotationToDirection

/] Purpose:

Convert a Yaw and Pitch to a direction vector

M i e |
void RotationToDirection(float pitch,float yaw,tVector *direction)

{
direction->x = -sin(yaw) * cos(pitch);
direction->y = sin(pitch);
direction->z = cos(pitch) * cos(yav);

}

{11 initParticleSystem ///////111IIIITIIIIEIEEETETNENEE DD DT

http://www.gdmag.com

{

{

}

GAME DEVELOPER

add a particle to an emitter

11/ Local Variables ///1111111111111111000000000000000EEEETELEELEET DD ETT
tParticle *particle;
tColor start,end;
float yaw,pitch,speed;
G
// IF THERE IS AN EMITTER AND A PARTICLE IN THE POOL
// AND T HAVEN'T EMITTED MY MAX
if (emitter !'= NULL &% m_ParticlePool != NULL &

emitter->particleCount < emitter->totalParticles)

// THE CURRENT PARTICLE
// FIX THE POOL POINTERS

particle = m_ParticlePool;
m_ParticlePool = m_ParticlePool->next;

if (emitter->particle != NULL)
emitter->particle->prev = particle;

particle->next = emitter->particle;
particle->prev = NULL;
emitter->particle = particle;
particle->pos.x = 0.0f;
particle->pos.y = 0.0f;
particle->pos.z = 0.0f;

// SET BACK LINK

/] SET ITS NEXT POINTER
// IT HAS NO BACK POINTER
// SET IT IN THE EMITTER

// RELATIVE TO EMITTER BASE

particle->prevPos.x = 0.0f; // USED FOR ANTI ALIAS
particle->prevPos.y = 0.0f;

particle-dprevPos.z = 0.0f;

// CALCULATE THE STARTING DIRECTION VECTOR
yav = emitter->yaw + (emitter->yawVar * RandomNum());
pitch = emitter->pitch + (emitter->pitchVar * RandomNum());

// CONVERT THE ROTATIONS TO A VECTOR
RotationToDirection(pitch,yav,kparticle->dir);

// MULTIPLY IN THE SPEED FACTOR

speed = emitter->speed + (emitter->speedVar * RandomNum());
particle->dir.x *= speed;

particle->dir.y *= speed;

particle->dir.z #= speed;

// CALCULATE THE COLORS

start.r = emitter->startColor.r + (emitter->startColorVar.r * RandomNum());
start.g = emitter->startColor.g + (emitter->startColorVar.g * RandomNum());
start.b = emitter->startColor.b + (emitter->startColorVar.b * RandomNum());
end.r = emitter->endColor.r + (emitter->endColorVar.r * RandomNum());
end.g = emitter->endColor.g + (emitter->endColorVar.g * RandomNum());
end.b = emitter->endColor.b + (emitter->endColorVar.b * RandomNum());

particle->color.r = start.r;
particle->color.g = start.g;
particle->color.b = start.b;

// CALCULATE THE LIFE SPAN
particle->life = emitter->Llife + (int)((float)emitter->1ifeVar * RandomNum());

// CREATE THE COLOR DELTA

particle->deltaColor.r = (end.r - start.r) / particle->life;
particle->deltaColor.g = (end.g - start.g) / particle->life;
particle->deltaColor.b = (end.b - start.b) / particle->1ife;
emitter->particleCount++; // A NEW PARTICLE IS BORN
return TRUE;

return FALSE;

}
111 addparticke ///1IITHIEIEEIEIEIEEIELIE 00 TEELE N TR ED LD DD DT

JULY 1998

LISTING 4. Adding a new particle to an emitter. a o 0 0
_ 0
Rotx(y) =

T
// Function: addParticle

// Purpose:
// Arguments: The emitter to add to
I T
BOOL addParticle(tEmitter *emitter)

D costw) snW)f
B -sn(y) cos(w)F

Once these two matrices are com-
bined into a single rotation matrix, I
get the following:

[€os(8) sin(Y)sin(®) -sin(B)cos(P)O]
RotMatrix:E 0 cos(W) sin(w) E
E8in(8) -sin(y)cos(8) cos(y)cos(8) §

Now, since I'm calculating a direc-
tion vector, I need to multiply the vec-
tor (0,0,1) by this matrix. Once the
zeros are all dropped out, I get the final
piece of code in Listing 3.To finalize
the particle motion vector, this final
direction vector is multiplied by the
speed scalar, which is also randomly
modified.

Creating a New Particle

T o avoid many costly memory allo-
cations, all particles are created in
a common particle pool. I chose to
implement this as a linked list. When a
particle is emitted, it’s removed from
the common pool and added to the
emitter’s particle list. While this limits
the total number of particles I can have
in the scene, it also speeds things up a
bunch. By making the particle bidirec-
tionally linked, it’s easy to remove a
particle when it dies.

The code that creates a new particle
and adds it to the emitter is in Listing
4. It handles all the list management
for the global pool and also sets up all
the stochastic settings for the particle.

I chose simply to create each new
particle at the origin of the emitter. In
his SIGGRAPH paper, William Reeves
describes generating particles in differ-

http://www.gdmag.com

ent ways (see “References”). Along with

a point source, he describes methods

for creating particles on the surface of a

sphere, within the volume of a sphere,
on the surface of a 2D disc, and on the
surface of a rectangle. These different
methods will create various effects, so
you should experiment to find what
works best for your application.

Updating the Particle

nce a particle is born, it’s handled

by the particle system. The update
routine is in Listing 5. For each cycle of
the simulation, each particle is updated.
First, it’s checked to see if it has died. If
it has, the particle is removed from the
emitter and returned to the global parti-
cle pool. At this time also, global forces
are applied to the direction vector, and
the color is modified.

Rendering the Particle System

particle system is simply a collec-

tion of points, and so it can be ren-

dered as just that, a set of colored 3D
points. You can also calculate a polygon
around the point so that it always faces
the camera like a billboard. Then apply
any texture you like to the polygon. By
scaling the polygon with the distance
from the camera, you can create per-

spective. Another option is to draw a 3D

object of any type at the position of the
particle.

I took the simple route. I just drew
each particle as a 3D point. If you turn

GAME DEVELOPER JULY 1998

on antialiasing, the system draws a
gouraud-shaded line from the previous
position and color to the new position
and color. This tends to smooth out the
look at the cost of some rendering
speed. You can see the difference in
Figures 1a and 1b. The first image is a
simple point rendering, and the second
is composed of line segments.

LISTING 5. Updating a Particle.

T T T
// Function: updateParticle
// Purpose: updateParticle settings
// Arguments: The particle to update and the emitter it came from
LT e i i i e e e e e el e e e g il
BOOL updateParticle(tParticle *particle,tEmitter *emitter)
{

// IF THIS IS A VALID PARTICLE

if (particle != NULL &k particle->life > 0)

// SAVE ITS OLD POS FOR ANTI ALTASING

particle->prevPos.x = particle->pos.x;
particle->prevPos.y = particle->pos.y;
particle->prevPos.z = particle->pos.z;

// CALCULATE THE NEW

particle->pos.x += particle->dir.x;
particle->pos.y += particle->dir.y;
particle->pos.z += particle->dir.z;

// APPLY GLOBAL FORCE TO DIRECTION

particle->dir.x += emitter->force.x;
particle->dir.y += emitter->force.y;
particle->dir.z += emitter->force.z;

/1 SAVE THE OLD COLOR

particle->prevColor.r = particle->color.r;
particle->prevColor.g = particle->color.g;
particle->prevColor.b = particle->color.b;

// GET THE NEW COLOR

particle->color.r += particle->deltaColor.r;
particle->color.g += particle->deltaColor.g;
particle->color.b += particle->deltaColor.b;

particle->life--;// IT IS A CYCLE OLDER
return TRUE;
}
else if (particle != NULL & particle->life == 0)
{
// FREE THIS SUCKER UP BACK TO THE MAIN POOL
if (particle->prev != NULL)
particle-dprev->next = particle->next;
else
emitter->particle = particle->next;
// FIX UP THE NEXT’S PREV POINTER IF THERE IS A NEXT
if (particle->next != NULL)
particle->next->prev = particle->prev;
particle->next = m_ParticlePool;
m_ParticlePool = particle; // NEW POOL POINTER
emitter->particleCount--; // ADD ONE TO POOL
}
return FALSE;

}
{11 updateParticle ////1/1/IIIIHTITIENEITEIEENELTLEEEIEETEETELE LD D00

http://www.gdmag.com

What Can You Do With It?

o nce you've designed your system,
you can start building effects. You

can easily build effects such as fire, water
fountains, spark showers, and others
simply by modifying the emitter proper-
ties. By attaching the emitter to another
object and actually animating it, you
can create simple smoke trails or a comet
tail.

You can also create even more com-
plex effects by creating a brand new
particle system at the point at which
each particle dies. The Genesis
sequence in Star Trek II actually had up
to 400 particle systems consisting of
750,000 particles. That may be a bit
much for your real-time blood spray,
but as hardware gets faster, who knows?

Also, my simple physics model could
be greatly modified. The mass of the
particles could be randomized, causing
gravity to effect them differently. A fric-
tion model would force some particles
to slow down while animating. The
addition of local spatial effects, such as
magnetic fields, wind gusts, and rota-
tional vortexes, would vary the particles

even more. Or you could vary the
emitsPerFrame in a cycle over time to cre-
ate a puffing smoke effect.

I've seen many other ideas imple-
mented in commercial particle sys-
tems. You can animate the size of the
particle over time to create a dispersing
effect. Add more color key positions
over the particle’s lifetime to create a
more complex look. Another interest-
ing variation is the use of a particle sys-
tem to create plants. By keeping track
of each position over the life of a parti-
cle and then rendering a line through
all those points, you get an object that
resembles a clump of grass. Organic
objects such as this would be difficult
to hand-model convincingly with poly-
gons. Another area for expansion is
collision detection. You could create
particles that bounce off of boundary
objects such as cubes and spheres by
simply reflecting the direction vector
off of the surface.

You can see from these ideas that
I've just begun to explore what can be
created with particle systems. By creat-
ing a flexible particle engine, you can
achieve many different effects by mod-

ifying a few simple settings. These flex-
ible emitters can easily be dropped
into an existing 3D real-time engine to
add to the realism and excitement of a
simulation.

The source code and application this
month demonstrate the use of a parti-
cle system. The emitter settings can be
manipulated via a dialog box to create
custom effects. These settings can be
saved to create a library of emitters. Get
the source and application on the
Game Developer’s web site at
www.gdmag.com. m

REFERENGES

Reeves, William T. “Particle Systems —
A Technique for Modeling a Class of
Fuzzy Objects.” Computer Graphics,
Vol. 17, No. 3 (1983): 359-376.

Reeves, William T. “Approximate and
Probabilistic Algorithms for Shading
and Rendering Structured Particles
Systems.” Computer Graphics, Vol. 19,
No. 3 (1985): 313-322.

Watt, Alan, 3D Computer Graphics.
Reading, Mass.: Addison Wesley, 1993.

	back:

