
b y J e f f L a n d e r G R A P H I C C O N T E N T

Games are getting pretty good at cre-
ating believable and immersive 3D
game worlds. Graphics hardware has
enabled multi-texture lighting tech-
niques and higher polygon counts,
greatly improving the environments
where we play. It’s not uncommon for
a person passing by a computer moni-
tor or television screen to mistake a
game environment for a video broad-
cast or a still photograph of some real
place.

There are few people, however, who
would mistake a 3D animated character
for a real person. In the early days of
3D games, it was sometimes even hard
to tell what a character was supposed
to be. Now that computing power has
enabled us to create more realistic look-
ing characters, we need to make these
creations come alive. It is not enough
that the character looks as good as a
still rendering. Characters need to have
what Frank Thomas and Ollie Johnston
of Disney called “the illusion of life.”

Creating the Illusion

One of the great challenges that an
animator faces is giving a model

the appearance of life. Creating a walk
cycle for a character where the feet
move correctly and do not slide will
not make it come to life. A good ani-
mation will give the character a sense
of weight, purpose, and emotion,
attributes which must be individually
crafted for each character. This is one
of the pitfalls many encounter when
using motion capture to generate ani-
mation. It would seem that when cap-
turing the performance of a live per-

son, you would get all the subtle
nuances that gives the person life. To
some extent that’s true. However, what
you are capturing is the performance of
an individual of a particular size and
type operating under certain physical
limitations. These limitations affect the
range of reality the actor can impart on
a character.

An interesting example of this was a
visual effects company that needed to
create a superhero. They hired a very
talented stuntman and attached him
to various harnesses and had him
leap, roll, pose, strut, and fight all
over a stage while the performance-
capture cameras were rolling. Unfor-
tunately, when the motion was
applied to the hero model, instead of
looking like a superhero, it looked like
a guy hooked up to a harness jumping
around. This is because the equipment
accurately captured the performance
of this person. He was an actor, not a

superhero. He didn’t move the way we
expect a superhero to move, and the
company ended up hiring a group of
animators to bring this superhero to
life. Sometimes even captured reality
is not enough to make a work of art
come to life.

Winkin’, Blinkin’, and Nod

One of the things that can kill the
illusion of life very quickly is to

have a dialogue with a character star-
ing at you continuously without ever
blinking. This is very distracting, as we
are very obviously accustomed to talk-
ing with people who blink occasional-
ly. When this doesn’t happen, it’s
immediately apparent that something
is wrong. So, an easy step toward mak-
ing your characters more realistic is to
allow them to blink.

In a low-polygon model, there may

h t t p : / / w w w . g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

1

To Deceive is To Enchant:

Programmable Animation

W hen we create a game, we create an illusionary world for the

player. Hopefully this world is so rich and alive that the player

may actually begin to believe in the existence of this game

world. As game makers, we are in the business of creating life.

Jeff is becoming more and more concerned about what procedural functions are con-
trolling his thoughts. If you are the one actually in control, drop him a line and let
him know what is really going on at jeffl@darwin3d.com.

F I G U R E 1 . Programming a blinking animation can add realism to a character.

not be polygons allocated to the eyes
that would make a blink possible. In
this case, it’s possible to use texture
animation to make a blink happen.
This has been done in a few 3D games
(GRIM FANDANGO, for example). How-
ever, if I really want to create expres-
sive characters that can show a range of
emotions, I need a model with enough
facial polygons to convey the expres-
sions I want. I could hand-manipulate
the eyes throughout all of my anima-
tions, including an idle cycle. But this
would mean the blinks would always
happen at the same time in the cycle
and it may look canned. Why not ani-
mate the eyes automatically through
the game engine?

If you read my column on real-time
facial animation (“Flex Your Facial
Animation Muscles,” Graphic Con-
tent, July 1999), you may remember
that I advocated creating a series of
facial morph targets that simulated
the actions of the facial muscles. In
this system, there is one muscle that
controls the closing of each eye. By
activating these two muscles, I can
make my character blink whenever I
want. It may seem overkill to have
each eye individually controlled
instead of having one action that clos-
es both eyes. However, if you want the
character to have the ability to wink,
you will need this flexibility. I also
don’t really care for synchronized
blinks. There are arguments over this
among animators, but I happen to
prefer it if the eyes do not close at the
exact same time. I like the eyes to
close just off a half-frame or so. Creat-

ing my models with separate muscle
targets gives me this flexibility.

Anyway, assume I have a model with
individual muscle targets for closing
the left and right eye. The muscle set-
tings go from 0 percent (open) to 100
percent (closed). I know that I general-
ly want the blinks to happen every four
to ten seconds and each blink should
take only two to three frames to com-
plete. This gives me the outline for a
procedural blinking model:

1. Pick a random number from 90 to
300 that signifies the number of
frames until the blink begins
(three to ten seconds at 30FPS).

2. Every frame, count that number
down until it hits 0.

3. Pick a random number from 30 to
50 for each eye.

4. Add that number to each eye mus-
cle, limiting to 100 percent.

5. Subtract that number from each
eye to get back to 0.

6. Start over at step 1.
You can see a sample blink sequence in
Figure 1.

This procedural sequence can run as
part of my animation loop without any
other controller. As the actual morph-
ing system is part of the standard facial
animation system, the blinking gener-
ates very little overhead.

This idea of a procedural function for
generating motion can go beyond sim-
ple blinking. When people are standing
idle, their attention drifts. They look

around to get a sense of the surround-
ing environment. Likewise, a character
in a game should not stare rigidly for-
ward waiting for input from the player.
If your facial controller allows you to
orient the eyes, you can apply the same
techniques as the blink function to
make the character look around a little.
Obviously, if the character is actually
looking at an object or a person, this
look-at constraint would override the
random eye-wandering behavior. Simi-
lar random facial effects can easily be

crafted to move the eyebrows and
mouth slightly, giving the character
even more life.

The game AI can also drive the char-
acter animation system automatically.
For example, the AI system may track
many of the character’s various attrib-
utes such as fatigue level, mood, and
physical pain. Facial expressions can be
crafted to exhibit these various traits
automatically as the AI system changes
them. This not only adds realism to the
game, it provides a secondary feedback
mechanism to the player.

Looking Beyond the Face

W hile simple facial adjustments
can do a great deal to break a

character’s wooden stare, something
needs to be done with the static poses.
An idle animation or two can help a
great deal. However, these animations
are usually cyclical and the pattern is
easy for players to detect. Adding some
procedural noise to these standard ani-
mations can help a lot. If your anima-
tion system is composed of a character
that is deformed by the use of a skeletal
system, these kinds of on-the-fly modi-
fications are easy to implement. For
one thing, you could add a little ran-
dom rotation to the head joint to
match the wandering gaze of the pro-
cedural eye controller. If there is a bone
controlling the finger rotation, the

character’s grip can be relaxed and
tightened, which people often do
when they are waiting around for
something to happen.

I have often found it useful to create
special bones in the character skeleton
specifically for these sorts of custom
procedural effects. One example is lit-
erally breathing life into a game char-
acter. In my column on skeletal defor-
mation techniques (“Over My Dead,
Polygonal Body,” Graphic Content,
October 1999), I discussed the use of a

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

2

F I G U R E 2 . People tend to look
around their surroundings when idle.

Now that computing power has
enabled us to create more realistic

looking characters, we need to
make these creations come alive.

full transformation matrix to deform a 3D character. A side
benefit of this technique is the ability to use transformation
components beyond simple rotation. A bone can also be
translated and scaled to deform the character. Though it
may not be obvious when these techniques are useful, this is
one of those cases. Suppose I made a child bone of the chest
and called it “breastbone.” I could then attach the vertices at
the front of the chest to this bone. By cyclically scaling this
bone up and down, I can give the character the appearance
of breathing. Say my character normally breathes 12 times a
minute and this goes up to 20 times a minute when the
character is very excited or fatigued. I can create a simple
procedural formula that will automatically create a breath
cycle in the game without any animation. Something like
breastbone.scale = (sin(DEG2RAD(frame * 1.2)) / 4.0) + 1.25
will make the breastbone scale up from 1 to 1.5 once every
150 frames, or 12 times a minute at 30 frames per second.
Increase that 1.2 to 2 and the character would breathe 20
times a minute. You can see how formulas can easily be
crafted that would enable all kinds of automated behavior.

Ken Perlin has experimented more than most with using
procedural functions and controlled noise to generate ani-
mation. The Improv animation system, developed at New
York University’s Media Research Lab and since licensed to
Improv Technologies, uses controlled noise and a variety of
animation blending functions to create unique and believ-
able animation. The animation is controlled from a high
level using a scripting language. You can see a Java interface
to an Improv-driven facial animation performance in Figure
4. Improv Technologies is licensing its animation system for
game development applications.

Muscles Flexing

A procedural noise or cyclical animation effect can be
very interesting. However, sometimes an effect needs to

be the direct result of an action. For example, a strong char-
acter may have biceps that bulge as the character bends its
elbows {Edit OK?}. Just as I did with the breathing example
above, I can create a child bone of the upper arm and place

it in the middle of where I desire the biceps “muscle” to
appear. This logical bone for the biceps is then associated
with the vertices along the top of the upper arm, exactly
where the biceps would appear. In order to make the muscle
bulge, I just need to scale the biceps bone up a bit. In order
to detect when I want this to happen, I could watch the
rotation of the forearm and adjust the biceps as the forearm
rotates. However, I really do not want to create all this code
to monitor the bones involved in these effects. I just want it
to happen automatically.

In many 3D animation packages, you can create a struc-
ture called an “expression.” An expression creates a mathe-
matical link between two objects in the animation system. I
want to use this same idea to simplify my muscle-bulge situ-
ation. When the lower arm rotates around 120 degrees about
its local X-axis, I want the biceps to be scaled up to 1.5 of
their original size. An expression that performs this task may
look like bicep.scale = (forearm.rotX / 240.0) + 1.0.

As you can see, if the forearm is not rotated, the scale
would be one. When the bone rotates, the scale will
increase. Extra care needs to be taken to make sure that the
scale doesn’t go below one or get too great. However, this is
easy to accomplish through the use of degree-of-freedom
restrictions.

Effects similar to this can be achieved simply by animat-
ing the biceps directly along with the forearm. Unfortu-
nately, this would not work if the player can dynamically
pose the character through inverse or forward kinematics.
The use of expressions also saves animation space by elimi-
nating the need to store the data directly. And while this is
just a simple example, but you can see that using expres-
sions to generate real-time animation data can be a very
powerful tool.

Looking Around the Room

Many algorithmic techniques for animation cannot be
simply triggered by a mathematical expression or sto-

chastic procedure. They require some input from the user. A
simple example is the look-at constraint. When the player (or

h t t p : / / w w w . g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

3

F I G U R E 3 . Trust me, this chest is heaving. Adding a breath-
ing sequence can enhance a character’s emotional response.

F I G U R E 4 . Improv Technologies’ system uses animation
blending functions and controlled noise for unique effects.

AI system) directs a character to look at
a location, this direction takes the form
of a request for an animation solution
that solves a geometry problem. Given a
character who has a head that can look
at a limited subspace, we need to find
the orientation for that head that points
in the direction of a target location
{Edit OK?}.

Recall that a 3×3 orientation matrix
is composed of three orthogonal unit
vectors that define the local coordinate
axes of the rigid body. These vectors
are often known as the right (R), up
(U), and forward (F) vectors which
define the local X, Y, and Z axes in the
right body. If I can determine the direc-
tion for these three vectors, I can com-
bine them to form the orientation
matrix for the head of my character.

When the character looks at a loca-
tion, the head is aligning one of these
three axes with the vector between the
root of the head and the look-at target.
In my case, I have constructed the head
such that it normally looks down the
positive Z axis. So to make the head
look at something {Edit OK?}, I create a
vector between the root and the target
and normalize it so it becomes a unit
vector. This defines the forward vector
in the above matrix giving me one
piece of the puzzle. I know that general-
ly I still want the head to be aligned
upright along the original Y axis. So for
now, I am going to set the U vector to
be (0,1,0). This may not be correct as
the look-at may cause the head to tilt a
bit, but for now it will be fine.

To determine the R vector, I am
going to use the fact that the cross

product of two vec-
tors is perpendicular
to them.

R = U × F
But I still need to fix
up U since my guess
may not have been
correct. This is easi-
ly accomplished by
crossing the F vec-
tor with the new R
to determine the
actual U vector.

U = F × R
That gives me all

the pieces to the
orientation matrix
and I can make the
head look at any
point in my 3D world. However, this
could lead to problems if the point is
behind the character. The head would
spin around like Linda Blair’s in The
Exorcist. In most cases, you will want
to have limits on look-at constraints so
the characters will only do what is
physically possible. For the head, I
probably want to restrict the character
so it can only turn its head 60 degrees
or so in each direction. In order to
make this happen using the above
method, I would need to take the ori-
entation matrix I calculated and con-
vert it to Euler angles and make sure
none of the angles were outside the
range of plus or minus 60 degrees.
That is kind of a pain and mathemati-
cally intensive so let’s take a look at
the problem in another way.

From a geometric perspective, the
problem of looking at an object can be
thought of as a two-degrees-of-freedom
problem. I want to find the angle
around the local Y axis (or yaw) and
the angle around the local X axis (or
pitch) that the head needs to rotate in
order to look at the target. I can solve
the problem by projecting the target
point onto the local XZ plane to deter-
mine the yaw, then projecting the tar-
get on the local YZ plane to determine
the pitch. Each of these steps then
becomes very easy. Figure 5 shows the
target position projected onto the XZ
plane.

I know from trigonometry that the
value for tanθ is equal to Tx/Tz. So I can
determine what yaw the head needs to
turn by taking atan(Tx/Tz). I can do the
same for the pitch using atan(Ty/Tz). If
those values are within the range of

motion for the head, the character can
animate to that position.

The Rise of the
Programmer/Animator

I think we are quite a ways from
being able to programmatically cre-

ate complete, believable, and interest-
ing animations for interactive 3D
characters. But an interactive charac-
ter is not like an actor in a video clip
or a 3D cutscene movie. In order for
this character to create the illusion of
life while the player interacts with it,
we need to accentuate the 3D model
with programmable animation tech-
niques. Through creative use of meth-
ods such as procedural animation and
programmable expressions, we can
supplement the basic animation with
interactive elements that react with
the game environment. In this
respect, game developers are clearly
treading across new ground. These
challenges and opportunities are
unique to interactive animation. How-
ever, this is certainly not the domain
of game programmers alone. Creation
of tools and production procedures
that can get artists, with their creative
vision for the game characters,
involved in the process will be critical
if we are to deceive and enchant our
audience successfully. ■

Orientation

R U F

R U F

R U F

x x x

y y y

z z z

=



















G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

4

θ

X

Z
T(x,z)

F I G U R E 5 . Projecting the target position.

Disney Animation
Thomas, Frank, and Ollie Johnston. The
Illusion of Life: Disney Animation. New
York: Hyperion Press, 1995.

Improv Technologies
For information on Improv see Ken
Perlin’s web site as well as Improv
Technologies’.
http://www.kenperlin.com
http://www.improv-tech.com

FF OO RR FF UU RR TT HH EE RR II NN FF OO

Thanks to Lisa Washburn at Vector
Graphics (http://www.vectorg.com) for
the model of Vivian used in the article.

Acknowledgements

