
b y J e f f L a n d e r G R A P H I C C O N T E N T

around, make collide, and then watch
their responses. Yeah, collision
response, that will be great! Then I
thought, “How am I going to get these
objects flying around in the first
place?” Well, I could give each object
an initial velocity and they would col-
lide. But, I would need world bound-
aries for those objects to bounce off of
so they would stay in play. To direct
the objects, I need to be able to apply
force. Suddenly, instead of a nice colli-
sion demo, I had designed ASTEROIDS.
All I wanted was a little demonstration
of a fairly simple concept and instead I
ended up applying forces and accelera-
tion to particles. I had stumbled on
the big “D” word: Dynamics.

That’s alright. I will not be afraid. I
always say, “Turn a problem into an
opportunity.” For months, I’ve been
considering picking up where Chris
Hecker left off his “Behind the Screen”
columns back in June 1997. Chris had
created a very interesting rigid body
dynamics simulation and spearheaded
the use of hardcore physics in the
game development community.
However, physics is a huge field full of
fertile topics that can be distilled into
nice column-sized pieces. So once
more good friends, into the breach.

What’s So Dynamic About It?

W hen I was writing about
inverse kinematics back in

September, I was only really interested
in kinematics: that is, the study of
motion without regard to the forces
that cause it. Dynamics, I said, con-
cerns how forces are used to create

motion, and I didn’t want to open up
that can of worms. Well, the can is
now open and the worms are climbing
all over.

I’m going to have to recap a bit, but
I suggest you go back and reread
Chris’s column from the January 1997
Game Developer, “Physics, the Next
Frontier.” If you don’t have the maga-
zine handy, the article is available on
the Definition Six web site at
http://www.d6.com/users/checker.

This month, I’m going to focus on
particle dynamics. What is particularly
important about particle dynamics is
the relationship between force, f, the
mass of a particle, m, and the accelera-
tion of that particle, a. This can be
stated in the familiar Newtonian nota-
tion as . You may recall from
Chris’s column that the acceleration
of a particle is the derivative with
respect to time of the velocity of that
particle, v. Likewise, the velocity of
the particle is the derivative with
respect to time of the position of the
particle, x. You can see how this rela-
tionship works in Eq. 1.

(Eq. 1)
So, let me state the problem I’m trying

to solve. Given a set of forces acting on a
particle at time t, where will that particle
be after a small amount of time has
passed? It’s clear that with the value of
the force and the mass of the particle, I
can obtain the acceleration of the parti-
cle. If I integrate that acceleration with
respect to t, I’ll end up with the new
velocity of the particle. If I integrate
again, I get the new position. Easy, right?

The structure for a particle is in
Listing 1. It’s easier to store 1/m for the
particle because this is what I need in
the equations. The forces that act on the
particle accumulate in the f term. With
this information, I can integrate the
dynamic system forward in time to
establish a new position for the particle.
This process involves solving ordinary
differential equations. Fortunately,

f ma

a
dv
dt

v x
f
m

v
dx
dt

x

=

= = = =

= =

˙ ˙˙

˙

f ma=

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

15

Collision Response:

Bouncy, Trouncy, Fun

Iwas all set this month to start talking about how to handle collision response. It

seemed to be the next logical step from the discussion last month on methods

for detecting collisions between 3D objects (“When Two Hearts Collide,”

February 1997). I thought I could just have these objects that you could move

Many have told Jeff that his top is made of the rubber and bottom of the spring.
Bounce him and Darwin 3D a note at jeffl@darwin3d.com

//// TTYYPPEE FFOORR AA PPHHYYSSIICCAALL PPAARRTTIICCLLEE IINN TTHHEE SSYYSSTTEEMM
ssttrruucctt ttPPaarrttiiccllee
{{

ttVVeeccttoorr ppooss;; //// PPoossiittiioonn ooff PPaarrttiiccllee
ttVVeeccttoorr vv;; //// VVeelloocciittyy ooff PPaarrttiiccllee
ttVVeeccttoorr ff;; //// TToottaall FFoorrccee AAccttiinngg oonn PPaarrttiiccllee
ffllooaatt oonneeOOvveerrMM;; //// 11 // MMaassss ooff PPaarrttiiccllee

}};;

L I S T I N G 1 . The particle type.

Chris’s column described a numerical
method of solving these problems.
Listing 2 contains code that uses the
simplest numerical integrator, known
as Euler’s method, to compute the new
state of the system. The great thing
about this integrator is that it’s simple
to implement and understand.
However, because it’s a simple approxi-
mation, it’s subject to numerical insta-
bility, as we will see later.

You Can’t Force Me to Move, Can You?

I now have a method for dynamically
moving particles around in a realistic

fashion. However, to get anything inter-
esting to happen, I need to get things
moving. This requires the application of
some brute force, or several forces. But
what kinds of forces do I want to apply
to my little particles?

Well, the obvious force that has been
applied to objects in games since the
beginning of computer simulations is
gravity. When I wrote the article on par-
ticle systems back in July 1998 (“The
Ocean Spray in Your Face”), I had a very
simple system for applying a force such

as gravity. This time, however, I want to
be a bit more physically realistic.
Gravity is a constant force that is being
applied to all particles. In order to realis-
tically simulate gravity, force must be
added into the particle’s force accumu-
lator every system update. In general,
this force is a vector pointing down
along the y axis. However, there’s noth-
ing to stop a simulator from having a
gravity vector that points in a different

direction. In fact, one of the very cool
things about having a good physical
simulation is that gravity can change
and things will still “look” correct. This
realistic look may not occur if you are
trying to hand animate an object.

Putting the Bounce
Back in my Bungie

N ow, gravity was a pretty obvious
force to apply to particles. But

what else can I do? A loose connection
of points isn’t really all that interesting
to watch even if it is simulated with
accurate physics. It would be much
more entertaining if I could connect
those particles to form structures.

What about stretching a spring
between two particles? This procedure
is actually easy to implement. Hook’s
spring law (Eq. 2) is a pretty good way
of representing the forces that a spring
exerts on two points.

(Eq. 2)
This formula represents the force

applied to particles a and b; the dis-
tance between these particles, L; the
rest length of the spring, r; the spring
constant or “stiffness”, ks; the damp-
ing constant, kd; and the velocity of
the particles, v. The damping term in
the equation is needed in order to sim-

f k L R k
L L

L
L
L

f f

L a b

L v v

a s d

b a

a b

= − −() + •

= −
= −

= −

˙

˙

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

16

//
//// FFuunnccttiioonn:: IInntteeggrraattee
//// PPuurrppoossee:: CCaallccuullaattee nneeww PPoossiittiioonnss aanndd VVeelloocciittiieess ggiivveenn aa ddeellttaattiimmee
//// AArrgguummeennttss:: DDeellttaaTTiimmee tthhaatt hhaass ppaasssseedd ssiinnccee llaasstt iitteerraattiioonn
//// NNootteeSS:: TThhiiss iinntteeggrraattoorr uusseess EEuulleerr''ss mmeetthhoodd
//
vvooiidd CCPPhhyyssEEnnvv::::IInntteeggrraattee((ffllooaatt DDeellttaaTTiimmee))
{{
////// LLooccaall VVaarriiaabblleess //
iinntt lloooopp;;
ttPPaarrttiiccllee **ssoouurrccee,,**ttaarrggeett;;

//
ssoouurrccee == mm__CCuurrrreennttSSyyss;; //// CCUURRRREENNTT SSTTAATTEE OOFF PPAARRTTIICCLLEE
ttaarrggeett == mm__TTaarrggeettSSyyss;; //// WWHHEERREE II AAMM GGOOIINNGG TTOO SSTTOORREE TTHHEE NNEEWW SSTTAATTEE
ffoorr ((lloooopp == 00;; lloooopp << mm__PPaarrttiicclleeCCnntt;; lloooopp++++))
{{
//// DDEETTEERRMMIINNEE TTHHEE NNEEWW VVEELLOOCCIITTYY FFOORR TTHHEE PPAARRTTIICCLLEE
ttaarrggeett-->>vv..xx == ssoouurrccee-->>vv..xx ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>ff..xx ** ssoouurrccee-->>oonneeOOvveerrMM));;
ttaarrggeett-->>vv..yy == ssoouurrccee-->>vv..yy ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>ff..yy ** ssoouurrccee-->>oonneeOOvveerrMM));;
ttaarrggeett-->>vv..zz == ssoouurrccee-->>vv..zz ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>ff..zz ** ssoouurrccee-->>oonneeOOvveerrMM));;

//// SSEETT TTHHEE NNEEWW PPOOSSIITTIIOONN
ttaarrggeett-->>ppooss..xx == ssoouurrccee-->>ppooss..xx ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>vv..xx));;
ttaarrggeett-->>ppooss..yy == ssoouurrccee-->>ppooss..yy ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>vv..yy));;
ttaarrggeett-->>ppooss..zz == ssoouurrccee-->>ppooss..zz ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>vv..zz));;

ssoouurrccee++++;;
ttaarrggeett++++;;

}}
}}

L I S T I N G 2 . My simple Euler intergrator.

pp11 == &&ssyysstteemm[[sspprriinngg-->>pp11]];;

pp22 == &&ssyysstteemm[[sspprriinngg-->>pp22]];;

VVeeccttoorrDDiiffffeerreennccee((&&pp11-->>ppooss,,&&pp22-->>ppooss,,&&ddeellttaaPP));; //// VVeeccttoorr ddiissttaannccee

ddiisstt == VVeeccttoorrLLeennggtthh((&&ddeellttaaPP));;

//// MMaaggnniittuuddee ooff ddeellttaaPP

HHtteerrmm == ((ddiisstt -- sspprriinngg-->>rreessttLLeenn)) ** sspprriinngg-->>KKss;; //// KKss ** ((ddiisstt -- rreesstt))

VVeeccttoorrDDiiffffeerreennccee((&&pp11-->>vv,,&&pp22-->>vv,,&&ddeellttaaVV));; //// DDeellttaa VVeelloocciittyy VVeeccttoorr

DDtteerrmm == ((DDoottPPrroodduucctt((&&ddeellttaaVV,,&&ddeellttaaPP)) ** sspprriinngg-->>KKdd)) // ddiisstt;; //// DDaammppiinngg TTeerrmm

SSccaalleeVVeeccttoorr((&&ddeellttaaPP,,11..00ff // ddiisstt,, &&sspprriinnggFFoorrccee));; //// NNoorrmmaalliizzee DDiissttaannccee VVeeccttoorr

SSccaalleeVVeeccttoorr((&&sspprriinnggFFoorrccee,,--((HHtteerrmm ++ DDtteerrmm)),,&&sspprriinnggFFoorrccee));; //// CCaallcc FFoorrccee

VVeeccttoorrSSuumm((&&pp11-->>ff,,&&sspprriinnggFFoorrccee,,&&pp11-->>ff));; //// AAppppllyy ttoo

PPaarrttiiccllee 11

L I S T I N G 3 . A damped spring force.

ulate the natural damping that would
occur due to the forces of friction. This
force, called viscous damping, is the
friction force exerted on a system that
is directly proportional and opposite
to the velocity of the moving mass. In
practice, the damping term lends sta-
bility to the action of the spring. The
code applying the spring force on two
particles is in Listing 3.

Other Forces

V iscous drag should be applied to
the entire system. A drag is a great

way of making the particles look as
though they are floating around in oil.
It also adds numerical stability to the

system, meaning that the particles
won’t bounce around too much. A vis-
cous drag force is applied by multiply-
ing a damping constant, Kd, with the
velocity of the particle and subtracting
that force from the accumulator.

Momentary forces are also very use-
ful for interacting with the simulation.
I’ve used a spring tied to a particle and
attached the mouse to drag the object
around. A force applied to a particle
can be used to create a motor or other
source of motion.

You can also make some interesting
effects by locking a particle. That is, by
turning off the simulation for a particu-
lar particle, it becomes fixed and can act
as an anchor point. (You can achieve
the same effect by causing the particle
to have an infinite mass. In the simula-
tor, simply set the particle’s mass to
zero.) Immobilizing one particle like
this creates many possibilities for creat-
ing complex simulations.

Finally, Back to Collision

W hew, now that I have a nice
dynamic particle simulator, I

can start talking about collision detec-
tion and response again. The simplest
form of collision detection that I can
add to this simulation is point-to-plane
collision. With particles, it will be easy.
Last month, I discussed the use of the
dot product to determine whether a
point has collided with a plane. Take a
look at Figure 1.

Particle X with a velocity vector V is
moving towards plane P with a normal
N. I know that a collision of some sort
occurred if (X-P) • N < ε, where ε is
some small threshold near zero. If that
value is < -ε, then the particle has
passed through the wall, penetrating it.
That won’t make my simulator happy,
so if a particle is penetrating any

boundary, it’s necessary to back up the
simulator a little and try again. If the
dot product is just very near zero, then I
have what is called a contact and I need
to check further.

A particle in contact with a boundary
may not be colliding with that bound-
ary if the particle is moving away from
the boundary. The relative velocity of
the two bodies is checked by calculat-
ing N • V. If that value is less than zero,
the two bodies are in colliding contact
and I need to resolve the collision.

To resolve the collision, I need to cal-
culate two more vectors. They repre-
sent the motion parallel and tangential
to the normal of collision. Take a look
at Figure 2.

The normal of collision is simply the
normal to the plane. I calculate the
velocity after the collision with Eq. 3.

(Eq.3)
In this equation, Kr is the coefficient

of restitution. This is the amount of the
normal force, Vn, that is applied to the
resulting force. If Kr is 1, I have a total-
ly elastic collision. If it is 0, the particle
sticks to the plane.

Building with Sticks

N ow that I have this nifty particle
simulator where I can attach par-

ticles with springs and apply forces to
them, it’s time to build something. Let
me start with a simple block such as
the one in Figure 3.

Each of the edges of the object is a
spring connecting the vertices.
Unfortunately, if I run this object
through the simulator, I end up with a
big heaping mess. The mess occurs

V N V N

V V V

V V K V

n

t n

t r n

= •()
= −

′ = −

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

P

N
X

V

F I G U R E 1 . A particle colliding with a

plane.

P

N
X

V

Vt

Vn

F I G U R E 2 . Components of a

collision.

F I G U R E 3 . A simple dynamic cube. F I G U R E 4 . A stable cube. F I G U R E 5 . A cube out of control.

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

19

because the springs connecting the
vertices aren’t enough to provide sta-
bility for the cube. In order to create a
cube that won’t collapse, it’s necessary
to put crossbeam supports on each
face of the cube (Figure 4).

Creating objects this way feels more
like constructing a bridge than 3D mod-
eling. You find yourself adding struts
and crossbeams all over the place.

Leave a face open and it behaves cor-
rectly. The face without the crossbeam
supports is more likely to collapse.

Bring Me Stability or Bring My
Program Death

Imentioned before that by using a
simple Euler integrator, I’m sacrific-

ing numerical stability for ease and
speed of calculation. You may won-
der, however, what happens when the
system becomes unstable. There’s a
really easy way to find out what will
happen. Remember the spring coeffi-
cient that was applied to the particles?
This coefficient represented the stiff-
ness of the springs used. If I set that
value fairly high because I want really
stiff springs, the little Euler integrator
cannot handle it. If you run that cube
I had with stiff springs, you may see
something like Figure 4 or something
equally interesting. The still frame
doesn’t do it justice. This is a rigid
body way out of control.

There’s a solution to combat this
instability beyond, “Don’t do that” —
it’s to give my integrator an upgrade.
Euler’s method is simply not sophisti-

cated enough to handle problems such
as this. Next month, I will take a look
at how I can improve the integrator
with something a little more stable.

Kid in a Gummi Bear Store

I really find in fun to play with this
simulator. It’s very satisfying to

bring in shapes and play with making
them stable and tweaking the spring
and gravity settings. You then can
fling the objects all around and
bounce them off the walls. There are
many more variables that can be
added to the simulator. Other forces
such as contact friction can be added.
Some interactive features such as pin-
ning vertices would make it more fun.
But I think we’re on our way to a really
fantastic Jello-land simulator. Next
month, I also plan on adding support
for multiple bodies as well as object-to-
object collision. Check out the source
code and demo application on the
Game Developer web site at
http://www.gdmag.com. It will allow
you to load in your own shapes, con-
nect them with springs, and play
around with the simulator. ■

• Baraff, David, and Andrew Witkin.

“Physically Based Modeling,” SIG-

GRAPH Course Notes, July, 1998, pp. B1-

C12. I built my first particle dynamics

simulator after seeing an article by

David Barraff a couple of years ago. For

this article, I used one source of his and

Andrew Witkin’s in particular.

• Hecker, Chris. “Behind the Screen.”

Game Developer, October 1996 – June

1997. Credit for the ideas and some of

the methods of simulation go to Chris

Hecker. I have tried to base my code on

many of his ideas so it will be familiar to

readers. His excellent series of articles

on rigid body physics got me and many

others excited about real-time physics.

Hopefully, I can continue to build on

this tradition. Also available on Chris’s

web site at http://www.d6.com.

You will need several good math and

physics books if you really want to get

into this topic. Here are a few that I

used in this article.

• Beer and Johnston. Vector Mechanics

for Engineers: Dynamics, Sixth Edition,

WCB/McGraw-Hill, New York, 1997.

• Mullges and Uhlig. Numerical

Algorithms with C, Springer-Verlag,

New York, 1996

• Acton, Forman S. Numerical Methods

that Work, Harper and Row, New York,

1970. This last book was a useful little

book my father had from his days of

working on guidance systems. Now I am

using it to make virtua-jello. Go figure.

• Doug DeCarlo at the University of

Pennsylvania wrote an application for

X-Windows called XSpringies that

allows you to simulate 2D particle-

spring interactions. You can check this

out from his website at http://www.cis.

upenn.edu/~dmd/doug.html or get the

program at ftp.cis.upenn.edu/

pub/dmd/xspringies/xspringies-

1.12.tar.Z

FF OO RR FF UU RR TT HH EE RR II NN FF OO

	back:

