
b y J e f f L a n d e r G R A P H I C C O N T E N T

been bugging me for days.
Occasionally, I have to jump up and
crank on the computer to try it out
right away. Most times though, I just
roll over and go back to sleep.
Epiphany or not, a guy needs his rest.

This phenomenon didn’t begin with
the computer age. In fact, long ago, the
mathematician Sir William Hamilton
found himself in the exact same situa-
tion. In the early 1830s, he was trying
to extend complex number theory
from 2D to 3D. Hamilton believed that
a complex volume could be defined by
one real and two imaginary axes. He
worked on this problem for over a
decade with no luck, and I might add,
without the aid of a computer. Then,
on October 16, 1843, while walking
past the Broome Bridge to a meeting at
the Royal Irish Academy in Dublin, the
answer came to him. Hamilton realized
that he needed three imaginary units
with some special properties to
describe the volume. He was so excited
and so fearful of losing the answer for
all time, that he carved the formula
into the side of the bridge with a knife.
It’s a good thing he didn’t roll over and
go to sleep.

He called his solution a “quater-
nion,” and it looks like this:

q = a + bi + cj + dk

Although I’ve never come up with
something so good that I needed to
carve it into the side of a bridge, I do
have some ideas for animating charac-
ters that I’ve wanted to implement for
years. Until now, I’ve had problems
making these ideas come to life. Some
of my problems are solved by better
hardware and some are solved by just
plain hard work. Today’s problem has
been solved by a combination of both.
But what, you ask, do quaternions and
my problems with animating charac-
ters have to do with game program-
ming? Read on.

Now that we have the ability to cre-
ate complex real-time characters, the
challenge lies in bringing these charac-
ters to life. So how do I do that success-
fully? It really comes down to a prob-
lem of data storage and playback. What

I need to store is the position and ori-
entation of each “bone” in the charac-
ter that I’m animating.

Last month, Nick Bobick wrote about
using quaternions for camera anima-
tion and physical simulation (“Rotat-
ing Objects Using Quaternions,” Feb-
ruary 1998). We are going to apply the
same concepts to character animation
in OpenGL.

Character Animation

A nimation data is normally stored in
keyframes. These keyframes are

recorded periodically. For instance,
motion capture data is often recorded at
30 frames per second (fps), the standard
NTSC video playback rate. Obviously,
such a high frame rate generates a lot of
data. In order to save precious RAM,
many game applications store animation
data at a much lower rate, say 10 fps.

However, modern 3D action games
try to run quite a bit faster than 10 fps.
A game running at 30 fps will show
three times as many frames as a 10 fps

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 8 G A M E D E V E L O P E R

15

Better 3D:

The Writing Is on the Wall

H ave you ever come up with the solution to a problem at an unfortunate

time? It can strike so suddenly. You know that if you don’t write it

down immediately, the solution may be lost forever. There are times

when I wake from a sound sleep with the answer to a problem that’s

Who is this Jeff Lander dude, anyway? Jeff’s a maniacal research nerd who loves the
challenge of computer graphics programming when not mountain biking by the
beach. He is always willing to learn more, and in fact, thrives on it. If you have any-
thing you want to learn more about or something you would like to discuss, contact
Jeff at jeffl@darwin3d.com.

animation. This leaves you with a couple of options. The first
option is to repeat or hold the same keyframe over three game
cycles until the next animation frame arrives. This approach,
however, can make your animation look a bit jerky.

The second option — and I consider this to be the better
solution — is to create frames in real time that are in-
between the existing keyframes. You generate these in-
betweens by interpolating where the bone is at a given
time between your keyframed data. Coming up with a
method by which to calculate this in-between position is
where I start hitting the wall (or bridge).

Euler Angles

T he most common method of representing the current
orientation of an object is through the use of Euler

angles. This method represents the absolute orientation of
an object as a series of three rotations about three mutually
orthogonal axes, normally labeled x, y, and z. These Euler
angles describe the three angular degrees of freedom. It’s
important to remember that by applying these rotations in
different orders, you’ll get different final orientations. So
it’s best to stay consistent.

If you saw the movie Apollo 13, you were probably amused
by those guys whipping out their slide rules and complain-
ing about something called “gimbal lock.” Well, as strange
as it sounds, gimbal lock can be a real problem. It’s named
after a situation that occurs in a mechanical gyroscope con-
sisting of three concentric rings. Under certain rotations, the
support for the gyroscope, called a gimbal, could lose of a
degree of freedom.

This problem has a parallel in computer graphics. Bobick
explained the situation in his February article, but it may help
us to visualize it. Because Euler angles do not act indepen-
dently of each other, it’s possible to lose a degree of freedom.
Therefore, a change to one of the angles affects the entire sys-
tem. Let’s look at an example. If I take the object in Figure 1a
and rotate it 30 degrees about the x axis, I’ll get the image in
Figure 1b. I now rotate the object 90 degrees about the y axis,
resulting in Figure 1c. As you can see, the current z axis is in
line with the xo axis. What we have now is gimbal lock. Any
further rotation about the z axis affects the same degree of
freedom as rotating about the x axis. I have completely lost
the ability to rotate around the third degree of freedom. In
many 3D modeling packages, it’s possible to avoid this prob-
lem by creating a parent to this object and rotating the parent
to gain back the additional degree of freedom. However, in a
real-time 3D game, this isn’t really possible.

The second problem with the use of Euler angles involves
generating an in-between. In order to animate my character
smoothly, I need to interpolate a new position out of the
existing keyframes in my animation data. The fact that the
Euler angles don’t act independently of each other again
raises a problem. I could represent the orientation of an
object as (0,180,0) degrees about (x,y,z) respectively. This
same orientation could also be described as (180,0,180).
Now, what if I want to generate a position halfway between
(0,0,0) and both orientations? In the first case, I would get
(0,90,0) (Figure 2a), but in the second case I would get
(90,0,90) (Figure 2b). Clearly, these two orientations are not

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

16

F I G U R E 1 A .

F I G U R E 1 B .

F I G U R E 1 C .

equivalent. These two problems with
animating Euler angles lead me to look
for a better way to store orientations for
my animation.

Quaternions

By using quaternions to represent the
orientation of an object, I can avoid

the drawbacks of using Euler angles. A
quaternion, when used to represent the
orientation of a rigid body in space, is
defined by two parts: a vector that
describes the axis of rotation and a scalar
value. When two quaternions of unit
magnitude are multiplied together, they
generate a single quaternion of unit mag-
nitude — this is crucial to the use of
quaternions for representing rotations.
So, to use this system of animation, I
have to convert my orientations from
Euler angles to quaternions. For details on
how quaternions are multiplied together I
would suggest the Shoemake article that
is referenced at the end of this column.

Conversion from Euler Angles to
Quaternions

R otations are defined as the follow-
ing quaternions using [(x,y,z),w]

notation, where (x,y,z) is a vector and w
is a scalar value.

Euler (x = ψ, y = θ, z = φ)
Qx = [(sin(ψ/2),0,0), cos(ψ/2)]
Qy = [(0,sin(θ/2),0), cos(θ/2)]
Qz = [(0,0, sin(φ/2)), cos(φ/2)]

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

18
F I G U R E 2 A .

F I G U R E 2 B .

//

//// FFuunnccttiioonn:: EEuulleerrTTooQQuuaatteerrnniioonn

//// PPuurrppoossee:: CCoonnvveerrtt aa sseett ooff EEuulleerr aanngglleess ttoo aa qquuaatteerrnniioonn

//// AArrgguummeennttss:: AA rroottaattiioonn sseett ooff 33 aanngglleess,, aa qquuaatteerrnniioonn ttoo sseett

//// DDiissccuussssiioonn:: TThhiiss ccrreeaatteess aa SSeerriieess ooff qquuaatteerrnniioonnss aanndd mmuullttiipplliieess tthheemm ttooggeetthheerr

//// iinn tthhee XX YY ZZ oorrddeerr..

//

vvooiidd EEuulleerrTTooQQuuaatteerrnniioonn((ttVVeeccttoorr **rroott,, ttQQuuaatteerrnniioonn **qquuaatt))

{{

////// LLooccaall VVaarriiaabblleess //

ffllooaatt rrxx,,rryy,,rrzz,,ttii,,ttjj,,ttkk;;

ttQQuuaatteerrnniioonn qqxx,,qqyy,,qqzz,,qqff;;

//

//// FFIIRRSSTT SSTTEEPP,, CCOONNVVEERRTT AANNGGLLEESS TTOO RRAADDIIAANNSS

rrxx == ((rroott-->>xx ** MM__PPII)) // ((336600 // 22));;

rryy == ((rroott-->>yy ** MM__PPII)) // ((336600 // 22));;

rrzz == ((rroott-->>zz ** MM__PPII)) // ((336600 // 22));;

//// GGEETT TTHHEE HHAALLFF AANNGGLLEESS

ttii == rrxx ** 00..55;;

ttjj == rryy ** 00..55;;

ttkk == rrzz ** 00..55;;

qqxx..xx == ssiinn((ttii));; qqxx..yy == 00..00;; qqxx..zz == 00..00;; qqxx..ww == ccooss((ttii));;

qqyy..xx == 00..00;; qqyy..yy == ssiinn((ttjj));; qqyy..zz == 00..00;; qqyy..ww == ccooss((ttjj));;

qqzz..xx == 00..00;; qqzz..yy == 00..00;; qqzz..zz == ssiinn((ttkk));; qqzz..ww == ccooss((ttkk));;

MMuullttQQuuaatteerrnniioonnss((&&qqxx,,&&qqyy,,&&qqff));;

MMuullttQQuuaatteerrnniioonnss((&&qqff,,&&qqzz,,&&qqff));;

qquuaatt-->>xx == qqff..xx;;

qquuaatt-->>yy == qqff..yy;;

qquuaatt-->>zz == qqff..zz;;

qquuaatt-->>ww == qqff..ww;;

}}

//// EEuulleerrTTooQQuuaatteerrnniioonn //

L I S T I N G 1 . Conversion from Euler angles to quaternions.

By multiplying these quaternions
together, I get a single quaternion rep-
resenting the orientation of the object.
The code for this conversion is shown
in Listing 1.

This routine is set up to handle rota-
tions in the order xyz. If your rotations
are stored in a different order, you may
need to be make some adjustments. By
combining functions, it is possible to
speed this up a bit. In the code that
accompanies this article, I reworked it
as a secondary conversion routine.

OpenGL Implementation

S ince my eventual output is
through OpenGL, I need to con-

vert the quaternion back into some-
thing useful. The ggllRRoottaatteeff command
takes an axis to rotate around and the
angle of rotation about that axis. This
axis-angle representation was explored
briefly in Chris Hecker’s column
“Physics, Part 4: The Third Dimension”
(Game Developer, June 1997, pp.17-18).
This representation is very similar to
the quaternion form. The quaternion is
defined as a rotation of φ about the axis
(x, y, z) such that

q = cos(φ/2) + x sin(φ/2)i + y sin(φ/2)j +
z sin(φ/2)k

Therefore, the axis and angle of rota-
tion can be retrieved from a quaternion
by simple algebra.

φ = acos(Qw)*2
x = Qx/sin(φ/2)
y = Qy/sin(φ/2)
z = Qz/sin(φ/2)

This gives us the
axis and angle that
we need. To use it
in OpenGL, the
last thing to do is
convert angle φ
from radians to
degrees, because
OpenGL is expect-
ing degrees (Listing
2). Since the data is
now in the correct
format for
OpenGL, the actu-
al display code is
very straightfor-
ward (Listing 3).

Where Does That Bring Us?

T he question is, “If quaternions are
so great, why not use them all the

time?” You certainly could. However,
most people find it difficult to visualize
the orientation of an object as a quater-
nion. People (at least 3D programming

dweebs) are often more comfortable
visualizing an orientation as Euler
angles. This is an important considera-
tion when you’re creating a tool that
will be used by artists and program-
mers. I’m sure people confronted with
a dialog box asking them to enter the
quaternion for a rocket ship would
have some problems. At least Euler
angles are a little more friendly.

The sample application uses the pre-
viously mentioned conversion routines
to display an object using either Euler
angles or quaternions. By switching
between these display methods, you
can see that both representations result
in the same final display (Figure 3).

Using these routines, I now have a
method for converting my Euler angle
rotations into quaternions and then
displaying them. Whew! This has been
a lot of difficult stuff. But now we have
the foundation. From here, I need to
start animating these orientations.
Next time, I’ll add the interpolation
code and build an application to dis-
play the in-betweens. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

20

//
//// FFuunnccttiioonn:: QQuuaattTTooAAxxiissAAnnggllee
//// PPuurrppoossee:: CCoonnvveerrtt aa qquuaatteerrnniioonn ttoo AAxxiiss AAnnggllee rreepprreesseennttaattiioonn
//// AArrgguummeennttss:: AA qquuaatteerrnniioonn ttoo ccoonnvveerrtt,, aa aaxxiissAAnnggllee ttoo sseett
//
vvooiidd QQuuaattTTooAAxxiissAAnnggllee((ttQQuuaatteerrnniioonn **qquuaatt,,ttQQuuaatteerrnniioonn **aaxxiissAAnnggllee))
{{
////// LLooccaall VVaarriiaabblleess //

ffllooaatt ssccaallee,,ttww;;
//

ttww == ((ffllooaatt))aaccooss((qquuaatt-->>ww)) ** 22;;
ssccaallee == ((ffllooaatt))ssiinn((ttww // 22..00));;
aaxxiissAAnnggllee-->>xx == qquuaatt-->>xx // ssccaallee;;
aaxxiissAAnnggllee-->>yy == qquuaatt-->>yy // ssccaallee;;
aaxxiissAAnnggllee-->>zz == qquuaatt-->>zz // ssccaallee;;

//// NNOOWW CCOONNVVEERRTT TTHHEE AANNGGLLEE OOFF RROOTTAATTIIOONN BBAACCKK TTOO DDEEGGRREEEESS
aaxxiissAAnnggllee-->>ww == ((ttww ** ((336600 // 22)))) // ((ffllooaatt))MM__PPII;;

}}
//// QQuuaattTTooAAxxiissAAnnggllee //

L I S T I N G 2 . Converting the angle φ to degrees.

F I G U R E 3 .

//// TTAAKKEE TTHHEE BBOONNEE EEUULLEERR AANNGGLLEESS AANNDD CCOONNVVEERRTT TTHHEEMM TTOO AA QQUUAATTEERRNNIIOONN
EEuulleerrTTooQQuuaatteerrnniioonn((&&ccuurrBBoonnee-->>rroott,,&&ccuurrBBoonnee-->>qquuaatt));;
//// QQUUAATTEERRNNIIOONN HHAASS TTOO BBEE CCOONNVVEERRTTEEDD TTOO AANN AAXXIISS//AANNGGLLEE RREEPPRREESSEENNTTAATTIIOONN
QQuuaattTTooAAxxiissAAnnggllee((&&ccuurrBBoonnee-->>qquuaatt,,&&aaxxiissAAnnggllee));;
//// DDOO TTHHEE RROOTTAATTIIOONN
ggllRRoottaatteeff((aaxxiissAAnnggllee..ww,, aaxxiissAAnnggllee..xx,, aaxxiissAAnnggllee..yy,, aaxxiissAAnnggllee..zz));;
ddrraawwMMooddeell((ccuurrBBoonnee));;

L I S T I N G 3 . Using quaternions in OpenGL.

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 8 G A M E D E V E L O P E R

21

I‘ve only scratched the surface of the math behind quater-

nions. But as you can see, a whole lot of history rests behind

them. People interested in reading more about quaternions and

their use in computer graphics should read these sources.

Hamilton, Sir William Rowan. “On quaternions; or On a New System of
Imaginaries in algebra.” Philosophical Magazine, XXV:10-13, 1844.
This is the original paper describing the actual discovery.

However, it’s very mathematical and probably not necessary

unless you have the desire to learn the underlying theory.

Shoemake, Ken. “Animating Rotation with Quaternion Curves.”
Computer Graphics (Proceedings of Siggraph 1985) 7:245-254,
1985.

Shoemake, Ken. “Euler Angle Conversion.” Graphic Gems II. Academic
Press: 222-229, 1994. These papers were essential to my under-

standing of the conversion process. The paper in Graphic Gems

II actually handles the general case of different rotation orders.

Watt, Alan and Mark Watt. Advanced Animation and Rendering
Techniques. New York: ACM Press, 1992. This is a very good book

that helped me with the background and comparisons

between Euler angles and quaternions.

Laura Downs has written a proof that quaternions really do rep-

resent rotations. It’s available at http://http.cs.Berkeley.edu/

~laura/cs184/quat/quatproof.html. Thanks to Ian Wakelin of

Rhythm and Hues Studios for turning me on to that site.

Also be sure to read Nick Bobick’s article “Rotating Objects

Using Quaternions,” in the Feb. 1998 issue of Game Developer

for other uses and a matrix-based approach.

RR EE FF EE RR EE NN CC EE SS

W hen developing an

advanced real-time

3D game engine and

production tools, it’s

important to work on decent hardware.

Likewise, when artists and designers work

on those tools, performance means pro-

ductivity. Now obviously, the 3D artists,

modelers, and animators should have

great systems. Any of the fully OpenGL-

certified high-end graphics cards would

also work well for production tools.

But what about the programmers, level

designers, balance testers, and so on? I

would like a great production environment

for everyone. Luckily for me, certain “mar-

ket pressures” have pushed some con-

sumer graphics hardware towards OpenGL

support. For me, OpenGL support means

that the images that I see in my modeling

and animation program and in my toolset

are identical. The material and display

parameters match exactly. This is very

important at the design level no matter

which final game application API is used

(OpenGL, Direct3D, or proprietary). Low-

cost OpenGL acceleration allows compa-

nies to get high-performance game pro-

duction stations for all the team members.

To be a good system for game produc-

tion, a graphics card should support

acceleration in multiple windows,

because most 3D development tools

require more then one viewpoint. It

should support most, if not all, display

features of the target platform. It should

also have decent performance in the tool,

as well as being able to run the actual

game application at a decent rate.

The 3Dlabs Permedia 2 chipset is an

excellent choice for a low-cost OpenGL tool

platform. 3Dlabs has much experience

working with OpenGL through its Glint fam-

ily of cards, and it shows. Its OpenGL dri-

vers are stable and robust. The Permedia 2

adds acceleration of glLines, which really

can help a development tool. The lack of

some blending modes may be an issue

when previewing the application. However,

the price/performance ratio is great.

The new Nvidia Riva 128 chipset is a

great performer. It has excellent potential

as an all around perfect production card,

as well as great speed and image quality

and fast Windows acceleration. Right

now, the OpenGL drivers are in testing,

but I have high hopes for this card.

The 3Dfx Voodoo Rush chipset is very

interesting. It’s certainly the king of the

hill (right now) as far as actual game per-

formance. However, the OpenGL support

beyond full-screen game applications is

questionable. The alpha driver that was

released was unusable in a development

environment, and I have yet to see

whether the new beta OpenGL driver will

accelerate graphics in a window. That

said, a Voodoo card to run the game

application combined with either of the

other boards for the production tools is a

great environment.

The recent announcement that

Microsoft is working with SGI to speed up

and improve OpenGL driver development

could change things dramatically. I will be

watching closely.

—Jeff Lander

Hardware for OpenGL Developer Tools

	back:

