
b y  J e f f  L a n d e r G R A P H I C  C O N T E N T

A topic as complex as the computer
simulation of the behavior of liquids
requires research. In fact, I have spent
the last week traveling up and down
the Rhine valley in western Germany
observing one of the great rivers of the
world. All right, so I mostly sat in a
Weinstube watching the barge traffic
travel up and down the Rhine. I just
ordered another round of wonderful
Spätlese Rieslings (trocken for me, lieblich
for my wife) while we discussed the
boat maneuvering between shallow
water reefs in the river.

Germany is a very interesting place
to research fluid dynamics. As a couple
of native Californians, several physical

realities were very clear to us. The only
liquid readily available and affordable
was wine (or beer in the rest of the
country) {confusing...the only avail.
liquid was wine in the Rhine valley
but there’s beer in the rest of the
country? plz. elaborate or clarify}
and the restaurants provided an amaz-
ing demonstration of the interaction of
turbulent hot gases in a dynamic envi-
ronment. The level of cigarette smoke
allows you to observe completely the
natural eddies and turbulent rotation
that occurs as people travel through
the field. As people who have been sub-
ject to California’s rather draconian
laws regarding the free release of turbu-

lent hot gases in confined spaces, it was
quite an impressive sight.

Watching the barges travel up and
down the river, I was impressed by the
size of the wakes left by these enor-
mous vessels. The wakes interacted
with the standing waves in the river,
reflected off the banks, and generally
interfered with each other creating
complex patterns in the water. Where
the river narrowed then widened again,
large eddies formed along the banks
slowly swirling around and around. 

The connecting Mosel river winds its
way up the canyons toward Belgium.
To control the level of water along the
river, a series of dams have been con-
structed, which the barges navigate
through a series of locks. The barges
enter the lock which is then sealed. The
water is raised or lowered to match the
level on the other side of the dam, and
then the vessel continues on its way.
It’s a wonder of fluid dynamics to
behold. These massive barges brimming
with heavy cargo are lifted by simply
pumping more water into the bathtub.
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Research on the Rhine:

Reflections on Water Simulation

L
ast month I left off talking about what makes water look realistic in a simula-

tion. I used image processing to create an effect that behaved something like

the way water behaves. However, the technique wasn’t based on any physi-

cal foundation. Now we need to consider some physical properties of liquid.

Wenn er nicht die Stufe der Flüssigkeit fließend aus seinem Weinglas heraus erwägt,
kann Jeff bei Darwin 3D erreicht werden. Überprüfen Sie, daß er wirklich zurück zu
Arbeit erhalten hat, indem er ihm an jeffl@darwin3d.com schrieb.

Kicking back in one of the Rhine valley’s Weinstuben offered the author a chance
to contemplate realistic simulations of water behavior, among other things.

µ	 Viscosity of the fluid


ρ	 Density of the fluid


∇ 	 Gradient operation

	 = (d/dx)i + (d/dy)j + (d/dz)k


g	 Gravity vector


p	 Pressure of a point in the fluid


v	 Velocity vector


s	 Height of water surface


b	 Height of water bottom 


d	 Depth of the water






A summary of the notations used in
this article.



This elegant method for transporting
cargo has been in use in western Europe
since the thirteenth century.

Where Is This Leading?

T
hese things that I observed along
the waterways of Europe are exactly

the kind of effects I would like to build
into my fluid simulations. The image-
based method I developed last month
didn’t simulate the physical properties
of water. There were ripples and they
interacted with each other, but model-
ing something like an eddy was way
beyond the capability of that simple
technique.

What goes into making an eddy, any-
way? First I need to discuss some physi-
cal properties of water. When a river is
moving, the individual water particles
are constantly interacting with each
other. The particles rub against each
other, against the sides of the river, and
against any rocks or other obstacles in
the flow. These interactions are a form
of friction between the water particles.
The physical property of the fluid that
regulates the amount of friction inter-
action is called viscosity. You probably
think of motor oil when you hear that
term. However, viscosity is a way of
describing the degree to which the par-
ticles will interact similar to the coeffi-
cient of friction in the Coulomb dry
friction model {Should we insert ref to
tribology column?}. 

To better visualize this interaction,
imagine that a river is a series of water
layers like stacked blocks as you see in
Figure 1a. When the flow is unobstruct-
ed, the layers all move together in the
direction of the flow. However, when
the flow of the bottom layer is
obstructed, the friction force is trans-
ferred between the layers, slowing
them and resulting in the situation you
see in Figure 1b.

When a flow behaves in this layered
manner, the flow is said to be laminar.
Another form of flow is called turbu-
lent flow. In a turbulent flow, particles
belonging to different layers become
mixed due to the internal friction of
the flow. For my simulation, I will only
be concerned with laminar flows.

Now if the river is flowing at relative-
ly slow velocity, when it encounters a
narrow section the viscous forces are
transferred through all the layers of

water, slowing the river down. You can
see this in Figure 2a. However, if the
inertial velocity of the water is strong
enough to overcome the viscous forces
acting between the layers, the flow sep-
arates from the shore. This creates an
eddy or vortex rotating in the direction
opposite the flow along the shore. In a
river, this is where the water pools and
debris and stagnant water accumulate.
You can see this behavior in Figure 2b.

This form of physical realism creates
a much more interesting game simula-
tion. Clearly, I would like to calculate
the effects of viscous forces in my vir-
tual water. To do this I need to turn to
computation fluid dynamics.

CFD and Gaming

E
ngineers have been studying fluid
flows for a long time now.

Computation fluid dynamics, or CFD,
has been a very important field with a

great variety of applications. Aircraft
and automobile manufacturers study
the flow of air across the surfaces of
planes and cars. Mechanical engineers
study the flow of liquids through pipes
and structures like dams. Even rocket
scientists use fluid dynamics to under-
stand the flow of the jet engines.

Fluid particles behave according to
the laws of physics. In general, parti-
cles behave according to Newton’s sec-
ond law. The second law states that the
sum of forces acting on a particle is
equal to the rate of change of the linear
momentum of the particle. If the mass
is constant, the sum of the forces is
equal to the product of the particle’s
mass and acceleration. In mathemati-
cal terms, this is the famous F = ma.

In the nineteenth century, physicists
Navier and Stokes applied Newton’s
second law to the field of fluid dynam-
ics. The behavior of a fluid particle is
governed by a series of equations
called, not surprisingly, the Navier-
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a. unobstructed flow b. obstructed flow

F I G U R E  1 .  Water layers, shown unobstructed (A) and obstructed (B). 

a. slow inertial fLow b. fast inertial flow with eddy

F I G U R E  2 .  A slow internal flow (A) and a fast internal flow (B), creating an eddy. 



Stokes equations. The first equation describes the force act-
ing on an infinitesimal fluid particle.

This equation states that the acceleration of the fluid par-
ticle is a function of the pressure, velocity, and force of grav-
ity acting on it. The formula is valid for fluids that exhibit a
linear relationship between the pressure components and
the velocity gradients. These fluids are called Newtonian flu-
ids and include most common fluids such as water, oil, and
air. {Air a fluid? I learn something new every month...}

A second part of the Navier-Stokes equations enforces the
fact that Newtonian fluids are incompressible. That is, the
mass of the fluid must be conserved.

These equations describe the complete behavior of
Newtonian fluids. However, it is fairly complex. In the field
of CFD it’s necessary to have highly accurate simulations
regardless of computational expense. As we know, in the
field of real-time computer graphics, we do not necessarily
share these priorities. As game developers, we are perfectly
willing to sacrifice correctness in exchange for interactive
rates. Our priorities are to create a realistic-looking anima-
tion using the fastest calculations possible.

The Navier-Stokes equations describe the motion of the
entire fluid field in three dimensions. However, for most
applications, I am not really concerned with the interactions
within the fluid. The key interaction for visual realism is the
surface of the fluid. By reducing the simulation to a 2D prob-
lem, I can greatly reduce the calculations required.

A Watery Landscape

M
ichael Kass and Gavin Miller realized this and tried to
simplify the Navier-Stokes equations. Physics have

{‘Physics has’ or ‘{Physicists have?’} used a simplification
of the above equations to predict the motion of shallow
water. The key was to make several assumptions.

The water surface should be thought of as a height field.
This restricts the possible range of effects, as you cannot
have splashing or breaking waves. This is similar to the use
of height fields for terrain landscapes. In a height field ter-
rain, it is not possible to have overhangs or caves without
resorting to multiple layers or other tricks.

The second assumption is that the horizontal velocity of
the water is constant throughout the column. This would
not accurately simulate the ground friction I showed in
Figure 2. However, this is not really important to the surface
appearance of the water.

The third simplification is that the vertical velocity of the
water particles is ignored. This will lead to problems only if
the change of height in adjacent columns occurs too dra-
matically. However, in practice, this is not a big issue.

Figure 3 shows a one-dimensional water height field. The
height of the surface of the water is s(x), and b(x) is the
height of the water bottom. I will set d(x) = s(x) – b(x) to be
the depth of the water at location x. The velocity of the col-
umn is given by v(x).

Given all these assumptions, the Navier-Stokes equation
for shallow water fluid flow becomes

The first equation is Newton’s second law and the second
equation is the conservation of mass. Kass and Miller simpli-
fy this further by eliminating the second term of the first
equation and change the second equation to vary with the
surface height. This assumption causes the speed of propaga-
tion to be constant throughout the field, which should not
be a problem if the fluid velocity it relatively small.

These equations can be combined as shown:

This last equation results in a partial differential equation.
In order to be useful, I need to change that to a discrete
form. Kass and Miller suggest the use of finite-difference
techniques for a delta time h in the form:
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F I G U R E  3 .  A one-dimensional water height field. 



This final formula describes the verti-
cal acceleration of the water surface at
position x. I can now simulate the sur-
face of the water in 2D. The formula
also largely conserves mass as the mass
conservation formula was calculated
into the final equation. However, there
is one situation that is not handled —
there is no restriction that the surface
of the water must be as high as bottom
surface, meaning s < b is possible. This
requires a bit of tweaking to fix. The
solution is to conserve volume manual-
ly for any location where s < b by
checking the water depth in the previ-
ous frame in the location and its neigh-
bors. If the volume differs from frame
to frame, I can distribute the difference
into the neighboring cells. This formu-
la is easy to code up and stick into my
existing simulation framework. This
makes it easy to start playing around
with variations on the formula.

I am really interested in making the
simulation in 3D. Luckily it is easy to
extend the algorithm. First, the height
field is extended to a 2D array. This
array is evaluated in the x and z direc-
tions using two passes with the finite-
difference equation. The water height
is determined in the y direction and,
finally, the grid is sent as a series of tri-
angle strips to the renderer.

Another Approach

O
ne problem with the above
approach is that the shallow

water simplifications eliminate some
of the features of the original Navier-
Stokes equations. One particular
change was the elimination of the vis-
cosity factor from the equation. The
assumption was that the entire fluid
field was a constant viscosity. For
some simulations, it may be desirable
to have fluids with viscosity values
that vary over time. Likewise, the
assumption that the wave propagation
speed is constant could be a problem
for some simulations.

Jim Chen and Niels Lobo approached
the problem by using the Navier-Stokes
equations more directly. The solution
they proposed was to consider the fluid
field as a 2D grid as Kass and Miller did.
However, in their approach the height
of the cell under consideration is not
determined directly. They start with the
general Navier-Stokes equation.

This formula is used to generate the
velocity vectors and pressure values at
every point in the grid. To determine
the height in the y direction of a partic-
ular point on the grid, the pressure at
that point is considered. The height is
then determined as some scaled value
of this pressure reading. 

This method effectively allows you
to simulate the interaction of fluids
with different viscosities. However,
there is no current consideration for
the shape of the water floor. Since I
find this to be an important aspect for
many game simulations, I will have to
determine how that can be added into
the equation without considering the
complete 3D Navier-Stokes equations.

Obviously, completely voxelizing my
simulation area and then calculating
the complete equations at every point
in the environment would be ideal.
This would allow for very realistic fluid
that could splash and break on itself, as
well as swirl at every level throughout
the volume. That is exactly what Nick
Foster and Dimitri Metaxas have done.
Their simulation allows for completely
realistic simulation of fluid in 3D.
However, the voxelized space that they
simulate is fairly small and even that
does not run anywhere near interactive
rates. Jos Stam proposed another
method for computing the fluid
dynamics in a 3D field at Siggraph 99.
But once again, the field size was much
too small to be usable in any of the
applications I have in mind.

So for now at least, I am left with
height map techniques for interactive
simulation. I will continue to research
the topic and keep you updated. At
least the computers are getting faster;
that will certainly help. But for now,
I’m going to get back to enjoying my
wine.  ■
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