Reinventing the Wheel: Build 3D Tools or Buy Them

Jeff Lander

Darwin 3D, LLC

jeffl@darwin3d.com

I am about to begin the production of a game. Should I buy all my building-block tools or should I build them? Well, there is no across-the-board answer to that question. There are several factors you should consider when discussing the budget and schedule of your game. So let's consider our 3D game project.

What do I need to build this game? This is where the entire production and management staff needs to sit down and assess all the game features and determine if custom tools will be absolutely necessary. You do not want to be programming a tool for two months and then find out there is a tool that you could have bought. And on the flip side, you do not want to be using an off-the-shelf product that doesn't fit the game engine specifications (the old square-peg-in-a-round-hole syndrome).

Off-the-Shelf Products

Clearly there are lots of tools on the market. And of all the available products, many are really good tools. Here is a clear example of not re-inventing the wheel. If an existing tool does what you need, then use it. This will free the programming team to work on the title. Although some tools are expensive, the cost of this tool will be offset by the potential cost of the staff needed to create the same result in-house. Think about it, some tool companies have entire staffs devoted to design, implementation and upkeep.

"Use an existing, commercially available tool unless it fundamentally does not work with our technology." (Brian Hook, id Software)

Chances are that your artists will already be familiar or even expert in an off-the-shelf tool so they will be more comfortable and not need to be re-trained. To get the data into your game, most off-the-shelf products allow the export through a common 3D file format.

One of the biggest potential drawbacks of any off-the-shelf product is that it usually lacks flexibility. If the tool is not exactly what you need, you may be forced to work around problems. Artists may have to do strange contortions to get the right result or the engine may need to be re-written to fit the data.

Custom Tools

Okay, I can't buy the tool I need or the tool that kind of works needs a lot of help. What do I do now? You consider the creation of your own custom tools. By creating your own tools, you can support the features specific to your title e.g. portals, bsps, collision regions, triggers etc. Your custom tools can run at real-time rates in your engine. This allows for accurate results for the artist at the time of asset creation. No more filtering the art through the engine to see what the art will actually look like in the game.

Also, one of the most important factors for many developers in having their own tools is because of the end users. If you created the tool, and own it, then you can distribute the tool with the game for the ultimate in player expandability. You have seen this become a major factor in the release of high-profile 3D action titles recently.

The clear disadvantage of custom tools is the cost. This cost is not only in dollar amounts, but also in time for both the creator(s) and user(s). More often than not, the time allocated to produce in-house tools is grossly underestimated. This leads to serious production errors down the road for the artists and the main game team. Several programmers I asked quoted that a custom tool ties up the lead (or if you have a tool programmer who is very familiar with the game engine) for a good 1/3 of the production cycle. I have never seen this itemized on a production budget. And as we all know (or will know), the management and those not in the actual trenches of game production typically underestimate the pre-game production time.

"Great, easy-to-use tools are an underrated key to making a great game, so we devote a lot of time, man-years!--to creating our own tools." (Scott Miller – 3D Realms)

Often, programmers create tools for the early stages of game engine development and testing and then hand them off as-is to the artists to use. The reaction is usually on the order of “What is this crap!!! There isn’t even an undo….” Realize if you commit to creating custom tools for development, you will need to consult heavily with the people charged with using the tool throughout the production. While supporting a tool beyond “barely functional” may seem a waste of development time, speeding the production workflow will save greatly through the long run. If you accept the responsibility of creating a tool, you must also support it. That is the tradeoff. If all the other factors are considered, then the worst nightmare of custom tool creation will not be realized.

 "Too many times I've seen tools being banged out that have had no real design or communication with the parties that will use them." (Pete Ivey – Silicon Dreams Studio Ltd.)

The In-betweeners Products: SDKs

Many high-end 3D modeling and animation packages now come with a development kit (SDK) that allows programmers (or script writers) to create custom functions that work within the existing package. Are SDKs really the best of both worlds? Once again that depends. If your company uses a tool that has an SDK, then you will find that your artists will have the built-in comfort zone. They will be able to work within a tool that is comfortable and full-featured. The programmer now has flexibility to extract only the information required of the game engine. Tools with SDKs allow for import of a common file format and the export of either a common file format or a custom format specific to your engine.

As game engine features become more and more complex, use of professional art packages will become mandatory if the programming staff is to keep up. Use of an SDK in these situations is an ideal goal.

"In the future you will be forced to use an off-the-shelf package because you cannot add features fast enough to a custom tool." (Gil Gribb - Raven)

Although, I may have sold you on the greatness of SDKs, not all programs have them. Also, the programs that do have SDKs may not allow you to create the features you want access to. SDKs also require extra work for the programmer to become familiar with the idiosyncrasies of the system.

Examples and Opinions
There are many tools that I would like to show off. Some are available on my website and others will be demonstrated during the session.

Conclusions
“We use commercially available tools whenever possible, and only build our

own when the quality or features we need just aren't available. For

example, for creature modelling and animation, 3D Studio Max and LightWave

are both excellent, so we went with them. For building large, low-polygon

levels, we found those tools tool slow and not ‘what you see is what you

get’ enough to be suitable, so we built UnrealEd.” (Tim Sweeny, Epic Games)

Only build tools where they are absolutely necessary and will add to the entire production, from game design, artist implementation and programmer integration. Programmers need to fight the urge to show off their programming prowess. Don't re-invent the wheel! Areas that typically don't need custom tools are:

Texture creation: You would have to go along way and have a huge staff to improve upon existing, off-the-shelf paint packages such as Photoshop, Fractal Painter, Debabelizer, and D-Paint. In addition, artists are already comfortable with using them. The exception may be the use of mathematical algorithms for real-time texture generation. However, a Photoshop plugin could also do nicely here.

Modelers: Same reason, 3D packages are created and continually updated by hundreds of staff members. These packages are very good at character and object creation, and in most cases you can complete entire environments with them. Animation methods in these packages are well thought out and fluid, making it tough to compete without a staff of hundreds. Ask an artist who knows SoftImage or Alias and then goes to work for a company with a proprietary modeling program - EEK. In most cases, exporting data from these packages in a common file format like OBJ or VRML will be perfectly adequate for most characters or object you will need to create.

Renderers: Unless you are needing real-time rendering, off-the-shelf renderers are perfect for backgrounds and cut-scene movies. Few can compete with the ease of use and flexibility these packages provide.

Sound: Although not a "3D issue," sound is an often ignored game element. But once again, products like ProTools and Sound Forge have this market nailed down.

Custom tools may be needed to get the exact results you want or to fit your game engine. In that case, there are areas where custom tools are appropriate:

Environments: Custom tools for level design, texturing and shadow map generation can be handy. It is much easier to adapt a level editor to the specific features of a game engine. Also, texturing and camera movement models in off-the-shelf packages do not handle the needs of level designers well. With a level editor based on the game engine designer/artist can get engine-accurate, real-time results. This is also the major piece of technology that can be given to end users to expand game life. Witness the industries that have grown up around 3D action and RTS games that have level editors. Games that involve the use of very restricted environments such as terrain heightmaps or strict grid based levels may also work well with a custom editor.

Characters: A custom modeling and animation tool may be needed only where the algorithms are so proprietary that the existing packages won't suit. New features such as custom skinning algorithms and dynamic physical simulation may be tough to handle in an existing package without a lot of work.

These areas seem to be the key places where off-the-shelf tools are insufficient. Beyond these, you may be in danger of “Re-Invention” so beware. Cutting edge game development is a complex and difficult endeavor. Choices made at the beginning of production can greatly impact whether you succeed of fail. Being well informed is the best way of increasing your odds of success.

Thanks to the industry leaders quoted above as well as the dedicated developers on the OpenGL Game Development list for their input.

