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For those who followed the series in Game Developer Magazine (September 1998 and November 1998), the lecture will include more examples and a more in depth look at the mechanics of Inverse Kinematics.  For those who attended the presentations at some of the GDC Roadtrips in November 1998, I have refined and revised this presentation to include answers from the Q & A sessions.

What is IK?

The goal of this paper and its accompanying talk is to get at the meaning and use of Inverse Kinematics for Real-Time Games.  So what is Kinematics?  Kinematics is the general study of motion without regard to the forces that cause it e.g. muscle flex and torque.  The concept of Forward Kinematics (FK) is familiar to most of you even if you don't know the term.  FK involves manipulating a desired body part (let's say a hand) through all the desired rotations and translations until it reaches the desired final position.  FK involves a direct machination of the hierarchy.  

Now, wouldn't it be nice to have the end position reached without direct manipulation of the hierarchy?  Well, that is Inverse Kinematics (IK).  Given a desired position and orientation for a final link in a hierarchy chain, establish the transformations required for the rest of the chain.

How is this going to be useful for my Real-Time Game? Computers have more power than ever and if you're like me, you want to use it.  IK allows for high interactivity and the added flexibility avoids canned motion sequences seen in previous games.  In other words we all want more as developers and gamers.

History and Science

In order to understand the role of Inverse Kinematics in Real-Time Games, it is useful to know where it is used and how it is implemented.  Inverse Kinematics has been used in robotics and high-end animation packages for many years.  Robots on the assembly line use IK to determine the joint angles needed to reach a specific point.  Animators find IK useful for animating characters with complex skeletal hierarchies.  Were they to have to animate each joint by hand, the process would rapidly become very tedious. 

There are some useful concepts that I would like to refer to while describing IK.  These concepts include Degrees of Freedom (DOF).  Given an articulated figure, each joint forms the number of degrees of freedom in the next object of the hierarchy.    For example, a car shock absorber has only the end position moving one degree of translational freedom.  Whereas, a ball and socket joint has x, y, and z axis rotational freedom (3 DOF) but can not translate at all.  When you hear of a game that features 6-DOF, they are referring to the fact that game represents motion in all three rotational and three translational degrees of freedom.  This is most common in flight or space sim.  Knowledge of the degrees of freedom desired is very important as each time a DOF is added, the calculations become increasingly more complex.
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Fig. 1: One Translational and One Rotational DOF

Trig Methods for Kinematics

Let’s start with a fairly simple Forward kinematics problem.  Take a look at the two link chain in Fig. 2.  The position P2 is determined by the rotation of the two links L1 and L2.  I can solve the forward kinematics of the problem by looking at each link.
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Fig. 2: Forward Kinematics

The FK equation for P1 is:
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The FK equation for P2 is:
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This expands to:
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To invert this, I will need to solve for the angles given the final position.  I start by looking for angle 2 ( (2 in Fig.2 above).

Use two helpful trigonometry identities:




cos(a + b) = cos(a)cos(b) - sin(a)sin(b)




sin(a+b) = cos(a)sin(b) + sin(a)cos(b)

That gives me:
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Now I square both sides:
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Add those together dropping out four terms:
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Rearranging some:
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Now I want to solve for angle 1.  Let’s look another image, Fig. 3.
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Fig. 3: Analytical IK continued

From this image, I can determine a couple of things.
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Now use the tan identity 
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 and doing some substitution.
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If I multiply out the x and the value for tan((4), I end up with:
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Well, that is it.  I have solved that fairly simple IK problem.  Now given any position (x,y), I can calculate the angles needed to reach it.  Although the calculations I performed to get the answer was pretty complicated, the solution is not and can be easily coded up as you can see in Listing 1.

Listing 1: Analytic Inverse Kinematic Solution for a Two link 

//////////////////////////////////////////////////////////////////////////

// Procedure:
ComputeIK

// Purpose:

Compute an IK Solution to an end effector position

// Arguments:
End Target (x,y)

// Returns:

TRUE if a solution exists, FALSE position isn't in reach

//////////////////////////////////////////////////////////////////////////

BOOL COGLView::ComputeIK(CPoint endPos)

{

/// Local Variables ///////////////////////////////////////////////////////////


float l1,l2;

// BONE LENGTH FOR BONE 1 AND 2


float ex,ey;

// ADJUSTED TARGET POSITION


float sin2,cos2;
// SINE AND COSINE OF ANGLE 2


float angle1,angle2;// ANGLE 1 AND 2 IN RADIANS


float tan1;


// TAN OF ANGLE 1

//////////////////////////////////////////////////////////////////////////


// SUBTRACT THE INITIAL OFFSET FROM THE TARGET POS


ex = endPos.x - (m_UpArm.trans.x * m_ModelScale);


ey = endPos.y - (m_UpArm.trans.y * m_ModelScale);


// MULTIPLY THE BONE LENGTHS BY THE WINDOW SCALE


l1 = m_LowArm.trans.x * m_ModelScale;


l2 = m_Effector.trans.x * m_ModelScale;


// CALCULATE THE COSINE OF ANGLE 2


cos2 = ((ex * ex) + (ey * ey) – 

(l1 * l1) - (l2 * l2)) / (2 * l1 * l2);


// IF IT IS NOT IN THIS RANGE, IT IS UNREACHABLE


if (cos2 >= -1.0 && cos2 <= 1.0)


{



angle2 = (float)acos(cos2);
// GET THE ANGLE WITH  ARCCOSINE



m_LowArm.rot.z = RADTODEG(angle2);
// CONVERT IT TO DEGREES



sin2 = (float)sin(angle2);
// CALC THE SINE OF ANGLE 2



// COMPUTE ANGLE 1



// CALCULATE THE TAN OF ANGLE 1



tan1 = (-(l2 * sin2 * ex) + ((l1 + (l2 * cos2)) * ey)) / 





  ((l2 * sin2 * ey) + ((l1 + (l2 * cos2)) * ex));



// GET THE ACTUAL ANGLE



angle1 = atan(tan1);



m_UpArm.rot.z = RADTODEG(angle1);
// CONVERT IT TO DEGREES



return TRUE;


}


else



return FALSE;

}

//////////////////////////////////////////////////////////////////////////

This form of IK solution is known as a Closed Form or Analytical Solution.  It has the benefit of being an exact solution and very fast to calculate.  It also allows you to calculate quickly whether or not the point is even reachable.  However, if the point is not in reach, the system will just fail without trying to get close.  This may not be desired.

The key drawback to Closed Form solutions is that they become increasingly more difficult to solve as the system complexity increases.  Simply adding another degree of freedom greatly increases the amount of math that needs to be solved in order to get at the solution.  If your problem is very complex involving many links, a closed form solution may not be possible.

Iterative/Numerical Solutions

Complex problems require an iterative approach.  Fortunately, numerical methods for iteratively solving mathematical problems have been studied extensively.  I can easily adapt some ideas from the world of robotics.

The robotics community has established methods for solving the inverse kinematics of an arbitrary system.  The solutions are generally based on either matrix inversion techniques or some form of optimization.  Matrix inversion is a complicated process that is both computationally very expensive and has a variety of other problems that stem from numerical instabilities.  Optimization-based methods avoid matrix inversion completely.  They also attempt to minimize the error in the system.  Inverse kinematics is basically an error minimization problem.  In the case of trying to make an articulated arm reach a desired position, one method would be to minimize the distance between the goal point and the end effector of the chain.  This can be accomplished by adjusting the joint angles in a way that minimizes this distance.

While there is plenty of research on approaches using both techniques, it seemed to me that the optimization-based methods seemed more likely to produce the real-time results I desire.

Cyclic-Coordinate Descent

In his Masters Thesis on inverse kinematics (see references), Chris Welman described a method for solving these problems using a technique termed cyclic-coordinate descent (CCD).  This technique was first outlined by Li-Chun Tommy Wang and Chih Cheng Chen in a paper in the IEEE Transactions on Robotics and Automation.  CCD involves minimizing the system error by adjusting each joint angle one at a time.  The method used starts at the last link in the chain and works backwards, adjusting each joint along the way.

Take a look at Fig. 4.
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Fig. 4: CCD In Action

I start with the last link in the chain.  First, I create a vector from the root of the current link, R, to the current effector position, E.  Another vector is created from, R, to the desired endpoint, D.  I wish to determine what the angle, a, is that I need to rotate the vector RE by to become the vector RD.  This is where a technique that is used quite a bit in 3D games comes in handy.  There are often times in a game where you want to calculate the angle by which a player needs to rotate to face an opponent.  I can use the same method to solve my IK problem.  The dot product relationship between two vectors is defined as 
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.  By taking the inverse cosine of the dot product, I get the angle between the vectors.

However, since the dot product only tells me the angle, I also need to know the direction I need to rotate about R.  For this, I can turn to the cross product.  The cross product operation creates a vector that is perpendicular to the two vectors.  By checking the sign of the Z element of the vector, I know which way to rotate.  This is the amount by which I modify the joint.  You can see the results in the second frame.
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I now move one link up the chain and repeat the process as seen in Figure 5.

Fig. 5: CCD Continues

This continues up the chain until the base joint is reached and then the process is repeated, starting at the last joint again.  This process is repeated until either the end effector is close enough to the desired position or the loop has repeated a set number of times.  This break count is needed to allow for positions that are not reachable.

Improving the Method-Restrictions on Degrees of Freedom

In many character hierarchies you may want to impose limits on the degrees of freedom (DOF) of an individual joint.  This would keep an individual joint from rotating into a position that is physically impossible for a character to achieve.  In some other inverse kinematic methods, this can be a bit complicated.  However, in the CCD method, such restrictions are easy.  Because of the way the method handles each joint as a single analytical geometry problem, any limits on individual joints are simply figured into the problem.  When the routine goes to update the joint rotation, a test determines if the joint is outside the limits.  If it is, the joint is clamped to those limit angles.  The rest of the joints are then used to satisfy the problem during later steps.

One interesting use of DOF restrictions is to allow them to be dynamically modified.  This can be used as a form of damage model.  Imagine if you have a character that gets shot in the arm.  You could dynamically change the restrictions on that joint to make aiming more difficult.  (Thanks to Chas Boyd of Microsoft for this tip.)

Improving the Method-Damping

The CCD method will rotate an individual joint to any angle needed to satisfy the problem at any step.  Since the routine starts from the last joint and works in, the method tends to favor later joints.  This bias may not always look natural.  Further, since each joint can swing wildly at each step, kinks are sometimes present in the resulting chain.  By limiting the amount a single joint angle can change at each step, both of these effects can be controlled somewhat.

Implementation

The algorithm outlined above is a simple form of the CCD method.  I was concerned only with the position of the final effector.  A true IK system would also allow you to give a target orientation for the end effector.  This can be added by changing the test for the error in the system and the amount of adjustment needed.  However, for my simple needs, the position goal was enough.  To measure the amount of error in the system, I simply checked the squared distance between the current end effector and the desired position.  By using the squared distance, I avoid the added computational cost of an extra square root.

I chose to turn off the drawing while the algorithm was running, but by leaving it on, you can see the steps as they are taken.  In an animation application, only the final solution angles would be used as keyframes for a quaternion interpolation.  That way, the animation would be quite smooth.  The complete code for the CCD algorithm is in the November 1998 issue of Game Developer on pages 18-20 as Listing 1.

Conclusions

I now have a robust system for solving inverse kinematic problems of any number of links.  The iterative nature of the algorithm makes it both easy to control and simple to modify.  In fact, with the CCD algorithm, adding extra links is no more difficult to set up.  It is simply an extra step in the iteration.  Restrictions on joints can be easily added to enhance the realism.  The solver is currently still 2D.  The algorithm works just as well in 3D, but the error correction would need to be changed around to rotate about the perpendicular angle.  

By only optimizing for the final position of the end effector, things are much simpler.  If you need to be concerned with the orientation of the final effector also, things would be more difficult.  However, for many 3D real-time applications, these simple methods work great.

Art Issues

This method can be used with skeletal based methods only.  Articulated hierarchical characters are fine.  However, a weighted skin character allows seamless characters.  With skeletal systems you get a great deal of other benefits so I don’t really see this as a problem.

Demo

Here is where I will present applications to demonstrate what has been discussed.  These demos are available on my website: www.darwin3d.com/gamedev.htm.  This is where you need to come in and interact.
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